A084422 Number of subsets of integers 1 through n (including the empty set) containing no pair of integers that share a common factor.
1, 2, 4, 8, 12, 24, 28, 56, 72, 104, 116, 232, 248, 496, 544, 616, 728, 1456, 1520, 3040, 3232, 3616, 3872, 7744, 8000, 11168, 11904, 14656, 15488, 30976, 31232, 62464, 69888, 76160, 80256, 89856, 91648, 183296, 192640, 208640, 214272, 428544
Offset: 0
Keywords
Examples
Exactly 4 of the 2^4=16 subsets of the integers from 1 through 4 contain a pair of integers that share a common factor; these are {2,4}, {1,2,4}, {2,3,4} and {1,2,3,4}. The other 12 subsets do not; hence a(4)=12.
References
- Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication. [Apparently unpublished as of 2016]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..220
- N. J. Calkin and A. Granville, On the number of coprime-free sets, Number Theory: New York Seminar 1991-1995 (eds. D. Chudnovsky, et.al.), Springer-Verlag (1996).
- Marcel K. Goh and Jonah Saks, Alternating-sum statistics for certain sets of integers, arXiv:2206.12535 [math.CO], 2022.
Crossrefs
Programs
-
Mathematica
Prepend[Table[Length@ Select[Rest@ Subsets@ Range@ n, Times @@ # == LCM @@ # &], {n, 22}] + 1, 1] (* Michael De Vlieger, Mar 27 2016 *)
-
PARI
a(n)=nb = 0; S = vector(n, k, k); for (i = 0, 2^n - 1, ss = vecextract(S, i); if (prod(k=1, #ss, ss[k]) == lcm(ss), nb++);); nb; \\ Michel Marcus, Mar 27 2016
-
PARI
a(n,k=1)=if(n<2, return(n+1)); if(gcd(k,n)==1, a(n-1,n*k)) + a(n-1,k) \\ Charles R Greathouse IV, Aug 24 2016
Extensions
More terms from Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 12 2003
Comments