cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A084486 Number of 4 X n 0-1 matrices which have n+3 1's and have no zero rows or zero columns.

Original entry on oeis.org

1, 32, 522, 5776, 50600, 380424, 2570932, 16073600, 94748400, 533515240, 2896652396, 15268777440, 78544641448, 395875164104, 1960998472260, 9570684204544, 46112171619296, 219682468794600, 1036237335593500
Offset: 1

Views

Author

W. Edwin Clark, May 27 2003

Keywords

Comments

This is the number of spanning subgraphs of the complete bipartite graph K(4,n) which have n+3 edges and no isolated vertices. If the subgraphs are also connected then they are spanning trees. The number of spanning trees in K(m,n) is known. See A001787.

Crossrefs

Programs

  • Maple
    with(LinearAlgebra): num1s := (M,m,n)->add(ListTools[Flatten](convert(M,listlist))[j],j=1..m*n): binrows := n->[seq(convert(i+2^n,base,2)[1..n],i=1..2^n-1)]; a := proc(n) local A,L,i,j,k,el,S,M: S := 0: L := binrows(n): for i from 1 to 2^n-1 do for j from 1 to 2^n-1 do for k from 1 to 2^n-1 do for el from 1 to 2^n-1 do A := Matrix([L[i],L[j],L[k],L[el]]); if num1s(A,4,n)=n+3 and (not has(Matrix([1,1,1,1]).A,0)) then S := S+1; end if; od; od; od; od; S; end proc: seq (a(n), n=1..2);
  • Mathematica
    a[n_] := n/48*((27*4^n - 32*3^n + 6*2^n)*n^2 + (-9*4^n + 32*3^n - 18*2^n)*n + (-6*4^n + 12*2^n));
    Array[a, 20] (* Jean-François Alcover, Nov 10 2017, after Vladeta Jovovic *)

Formula

n/48*((27*4^n-32*3^n+6*2^n)*n^2+(-9*4^n+32*3^n-18*2^n)*n+(-6*4^n+12*2^n)). - Vladeta Jovovic, May 28 2003
G.f.: x * (1 -4*x -40*x^2 +44*x^3 +2885*x^4 -19624*x^5 +59014*x^6 -97728*x^7 +98064*x^8 -67200*x^9 +28800*x^10) / ((3*x-1)^4*(2*x-1)^4*(4*x-1)^4). - Alois P. Heinz, Sep 24 2012

Extensions

Comment corrected by W. Edwin Clark, Sep 24 2012
Showing 1-1 of 1 results.