A084569 Partial sums of A084570.
1, 3, 9, 21, 44, 82, 142, 230, 355, 525, 751, 1043, 1414, 1876, 2444, 3132, 3957, 4935, 6085, 7425, 8976, 10758, 12794, 15106, 17719, 20657, 23947, 27615, 31690, 36200, 41176, 46648, 52649, 59211, 66369, 74157, 82612, 91770, 101670, 112350, 123851
Offset: 0
Links
- R. J. Mathar, Generating perimeter-magic polygons, C++ (2025)
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Crossrefs
Cf. A116701.
Programs
-
Mathematica
Accumulate[LinearRecurrence[{3,-2,-2,3,-1},{1,2,6,12,23},50]] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{1,3,9,21,44,82},50] (* Harvey P. Dale, Nov 12 2014 *)
Formula
a(n) = (-1)^n/8 + (n^4 + 6*n^3 + 17*n^2 + 30*n + 21)/24.
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (i + (-1)^i).
G.f.: ( -1+x-2*x^2 ) / ( (1+x)*(x-1)^5 ). - R. J. Mathar, Mar 08 2025
a(n)+a(n+1) = A116701(n+3)-1. - R. J. Mathar, Mar 08 2025
Comments