cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084570 Partial sums of A084263.

Original entry on oeis.org

1, 2, 6, 12, 23, 38, 60, 88, 125, 170, 226, 292, 371, 462, 568, 688, 825, 978, 1150, 1340, 1551, 1782, 2036, 2312, 2613, 2938, 3290, 3668, 4075, 4510, 4976, 5472, 6001, 6562, 7158, 7788, 8455, 9158, 9900, 10680, 11501, 12362, 13266, 14212, 15203, 16238
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

Partial sums give A084569.

Programs

  • Magma
    [(-1)^n/4 + (2*n^3+6*n^2+10*n+ 9)/12: n in [0..50]]; // Vincenzo Librandi, Apr 04 2015
  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{1,2,6,12,23},50] (* Harvey P. Dale, Nov 12 2014 *)
    CoefficientList[Series[(1 - x + 2 x^2) / ((1 + x) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 04 2015 *)
  • PARI
    a(n) = sum(j=0, n, sum(i=0, j, (i+(-1)^i)));
    vector(50, n, n--; a(n)) \\ Michel Marcus, Apr 04 2015
    

Formula

a(n) = (-1)^n/4 + (2n^3 + 6n^2 + 10n + 9)/12.
a(n) = Sum_{j=0..n} (Sum_{i=0..j} (i + (-1)^i)).
From Arun Giridhar, Apr 03 2015: (Start)
a(n) = ceiling(A006527(n+1) / 2).
a(n) = ceiling((n^3 + 3n^2 + 5n + 3)/6).
(End)
G.f.: (1-x+2*x^2)/((1+x)*(1-x)^4). - Vincenzo Librandi, Apr 04 2015

A382455 Order 3 perimeter magic squares of magic sum n, all elements distinct and 1 in the set; bracelet symmetry.

Original entry on oeis.org

3, 9, 23, 45, 75, 109, 178, 220, 324, 403, 545, 623, 872, 945, 1238, 1397, 1725, 1878, 2390, 2530, 3087, 3317, 3968, 4212, 5057, 5256, 6186, 6569, 7569, 7893, 9201, 9511, 10890, 11359, 12863, 13340, 15135, 15543, 17492, 18145, 20170, 20739, 23212, 23784, 26325, 27100, 29813, 30598, 33727
Offset: 12

Views

Author

R. J. Mathar, Mar 26 2025

Keywords

Comments

The order-3 perimeter-magic square has 3 positive integers (=order) per side (4 at corners, 4 within edges, total 8) where the sum of the 3 integers on each side is the same. Here we require that all 8 integers are distinct, that 1 is one of them, and that rotations and flips are not counted separately (recognizing the bracelet symmetry).

Crossrefs

Cf. A380962 (1 not necessarily included), A084569 (elements not necess. distinct).

Formula

a(n) = A380962(n)-A380962(n-3).
Showing 1-2 of 2 results.