cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084569 Partial sums of A084570.

Original entry on oeis.org

1, 3, 9, 21, 44, 82, 142, 230, 355, 525, 751, 1043, 1414, 1876, 2444, 3132, 3957, 4935, 6085, 7425, 8976, 10758, 12794, 15106, 17719, 20657, 23947, 27615, 31690, 36200, 41176, 46648, 52649, 59211, 66369, 74157, 82612, 91770, 101670, 112350, 123851
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

Conjecture: a(n) is the number of perimeter-magic (hollow) squares of order 3 with magic sum n+3. Order 3 means each of the 4 edges has 3 elements >=1; the square has 8 elements. The elements do not need to be distinct, and squares obtained by rotations are counted only once. The square (read ccw) for magic sum 3 has elements 1 1 1 1 1 1 1 1. The 3 squares with magic sum 4 are 1 1 2 1 1 1 2 1, 1 1 2 1 1 2 1 2 and 1 2 1 2 1 2 1 2. - R. J. Mathar, Mar 08 2025

Crossrefs

Cf. A116701.

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{3,-2,-2,3,-1},{1,2,6,12,23},50]] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{1,3,9,21,44,82},50] (* Harvey P. Dale, Nov 12 2014 *)

Formula

a(n) = (-1)^n/8 + (n^4 + 6*n^3 + 17*n^2 + 30*n + 21)/24.
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (i + (-1)^i).
G.f.: ( -1+x-2*x^2 ) / ( (1+x)*(x-1)^5 ). - R. J. Mathar, Mar 08 2025
a(n)+a(n+1) = A116701(n+3)-1. - R. J. Mathar, Mar 08 2025

A035597 Number of points of L1 norm 3 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 12, 38, 88, 170, 292, 462, 688, 978, 1340, 1782, 2312, 2938, 3668, 4510, 5472, 6562, 7788, 9158, 10680, 12362, 14212, 16238, 18448, 20850, 23452, 26262, 29288, 32538, 36020, 39742, 43712, 47938, 52428, 57190, 62232, 67562
Offset: 0

Views

Author

Keywords

Comments

Sums of the first n terms > 0 of A001105 in palindromic arrangement. a(n) = Sum_{i=1 .. n} A001105(i) + Sum_{i=1 .. n-1} A001105(i), e.g. a(3) = 38 = 2 + 8 + 18 + 8 + 2; a(4) = 88 = 2 + 8 + 18 + 32 + 18 + 8 + 2. - Klaus Purath, Jun 19 2020
Apart from multiples of 3, all divisors of n are also divisors of a(n), i.e. if n is not divisible by 3, a(n) is divisible by n. All divisors d of a(n) for d !== 0 (mod) 3 are also divisors of a(abs(n-d)) and a(n+d). For all n congruent to 0,2,7 (mod 9) a(n) is divisible by 3. If n is divisible by 3^k, a(n) is divisible by 3^(k-1). - Klaus Purath, Jul 24 2020

Crossrefs

Partial sums of A069894.
Column 3 of A035607, A266213, A343599.
Row 3 of A113413, A119800, A122542.

Programs

  • Magma
    [(4*n^3 + 2*n)/3: n in [0..40]]; // Vincenzo Librandi, Sep 19 2011
  • Maple
    f := proc(n,m) local i; sum( 2^i*binomial(n,i)*binomial(m-1,i-1),i=1..min(n,m)); end; # n=dimension, m=norm
  • Mathematica
    Table[(4n^3+2n)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,12,38},41] (* Harvey P. Dale, Sep 18 2011 *)

Formula

a(n) = (4*n^3 + 2*n)/3.
a(n) = 2*A005900(n). - R. J. Mathar, Dec 05 2009
a(0)=0, a(1)=2, a(2)=12, a(3)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: (2*x*(x+1)^2)/(x-1)^4. - Harvey P. Dale, Sep 18 2011
a(n) = -a(-n), a(n+1) = A097869(4n+3) = A084570(2n+1). - Bruno Berselli, Sep 20 2011
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=3. Also, a(n) = A001845(n) - A001844(n). - Shel Kaphan, Feb 26 2023
a(n) = A005899(n)*n/3. - Shel Kaphan, Feb 26 2023
a(n) = A006331(n)+A006331(n-1). - R. J. Mathar, Aug 12 2025

A209032 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero and first differences in -k..k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 3, 4, 6, 2, 1, 3, 5, 12, 11, 4, 1, 4, 7, 23, 34, 33, 6, 1, 4, 10, 38, 88, 144, 86, 13, 1, 5, 12, 60, 187, 471, 576, 278, 21, 1, 5, 15, 88, 358, 1237, 2517, 2613, 873, 45, 1, 6, 19, 125, 625, 2798, 8235, 14611, 11841, 2938, 83, 1, 6, 22, 170, 1023
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Comments

Table starts
..1...1....1.....1.....1......1......1.......1.......1.......1.......1........1
..1...2....2.....3.....3......4......4.......5.......5.......6.......6........7
..1...2....4.....5.....7.....10.....12......15......19......22......26.......31
..2...6...12....23....38.....60.....88.....125.....170.....226.....292......371
..2..11...34....88...187....358....625....1023....1584....2355....3374.....4700
..4..33..144...471..1237...2798...5648...10483...18174...29863...46918....71037
..6..86..576..2517..8235..22249..52208..110285..214440..390344..672932..1108883
.13.278.2613.14611.58524.186765.505857.1210780.2631514.5293759.9995616.17902216

Examples

			Some solutions for n=6, k=6:
.-4...-3...-2...-4...-2...-5...-3...-2...-5...-6...-2...-3...-3...-3...-4...-3
.-2....1...-1....2...-1...-5...-1...-1...-1...-2...-1...-1...-3...-3...-4....1
..2...-2...-1...-3....0...-1...-1....0....5....3....0....3...-3...-1...-1...-2
.-1....1....2....0...-1....5....1....3....2....5...-1...-1....1....2....4....3
..3....1....3....3....0....6....5...-1...-1....0....4....3....5....4....4....0
..2....2...-1....2....4....0...-1....1....0....0....0...-1....3....1....1....1
		

Crossrefs

Row 2 is A004526(n+2).
Row 3 is A007997(n+5).
Row 4 is A084570.

Formula

Empirical for row n:
n=2: a(k) = a(k-1) + a(k-2) - a(k-3).
n=3: a(k) = 2*a(k-1) - a(k-2) + a(k-3) - 2*a(k-4) + a(k-5).
n=4: a(k) = 3*a(k-1) - 2*a(k-2) - 2*a(k-3) + 3*a(k-4) - a(k-5).
n=5: a(k) = 2*a(k-1) - 2*a(k-3) + 2*a(k-4) - a(k-5) - 2*a(k-6) + 2*a(k-7) + a(k-8) - 2*a(k-9) + 2*a(k-10) - 2*a(k-12) + a(k-13).

A084263 a(n) = (-1)^n/2+(n^2+n+1)/2.

Original entry on oeis.org

1, 1, 4, 6, 11, 15, 22, 28, 37, 45, 56, 66, 79, 91, 106, 120, 137, 153, 172, 190, 211, 231, 254, 276, 301, 325, 352, 378, 407, 435, 466, 496, 529, 561, 596, 630, 667, 703, 742, 780, 821, 861, 904, 946, 991, 1035, 1082, 1128, 1177, 1225, 1276, 1326, 1379, 1431
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

Old name was "Modified triangular numbers".
Starting with offset 1 = row sums of an infinite lower triangular matrix with alternate columns of (1, 3, 5, 7, ...) and (1, 0, 0, 0, ...) (see example). - Gary W. Adamson, May 14 2010

Examples

			From _Gary W. Adamson_, May 14 2010: (Start)
First few rows of the triangle with row sums = A084263 =
1;
3, 1;
5, 0, 1;
7, 0, 3, 1;
9, 0, 5, 0, 1;
11, 0, 7, 0, 3, 1;
...
Example: a(4) = 11 = (7 + 0 + 3 + 1). (End)
		

Crossrefs

Partial sums of A004442.

Programs

Formula

E.g.f.: cosh(x)+exp(x)*(x+x^2/2).
a(n) = Sum_{k=0..n} k+(-1)^k.
a(n) = A000217(n)+A059841(n). Partial sums are A084570. Binomial transform is A084264.
G.f.: (1-x+2*x^2)/((1-x)^3*(1+x)). - R. J. Mathar, Apr 02 2008
a(0) = 1, a(n) = n^2 - a(n-1) + 1 for n >= 1. - Richard R. Forberg, Jun 05 2013
a(n) = 1 + floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) + a(n+1) = A002522(n+1). - R. J. Mathar, May 21 2018
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Wesley Ivan Hurt, Dec 23 2021

Extensions

Name changed by Wesley Ivan Hurt, Dec 23 2021
Showing 1-4 of 4 results.