cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A084595 For n > 0: a(n) = Sum_{r=0..2^(n-1)-1} binomial(2^n, 2r+1)*3^r.

Original entry on oeis.org

1, 2, 16, 896, 2781184, 26794772135936, 2487085750646543836443049984, 21427531469765285263614058238314319540132878612321796096
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), May 31 2003

Keywords

Comments

A084594(n)/a(n) converges to sqrt(3). Related to Newton's iteration.
a(n) is divisible by 2^n.

Crossrefs

Programs

  • Mathematica
    For n>0: Table[Sum[Binomial[2^n, 2 r + 1]3^r, {r, 0, 2^(n - 1) - 1}], {n, 1, 8}]
  • PARI
    a(n) = if (n==0, 1, sum(r=0, 2^(n-1)-1, binomial(2^n, 2*r+1)*3^r)); \\ Michel Marcus, Sep 09 2019; corrected Jun 13 2022

Formula

a(n) = ((1+sqrt(3))^(2^n) - (1-sqrt(3))^(2^n))/(2*sqrt(3)).
For n > 1:
a(n) = 2*a(n-1)*sqrt(3*a(n-1)^2 + A001146(n-1)).
a(n) = 2*a(n-1)*A084594(n-1).
a(n) = A002605(2^n).
Showing 1-1 of 1 results.