A084594 a(n) = Sum_{r=0..2^(n-1)} Binomial(2^n,2r)*3^r.
1, 4, 28, 1552, 4817152, 46409906716672, 4307758882900393634270543872, 37113573186414494550922197215584520229965687291643953152
Offset: 0
Links
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Eric Weisstein's World of Mathematics, Newton's Iteration.
Programs
-
Mathematica
Table[Sum[Binomial[2^n, 2 r]3^r, {r, 0, 2^(n - 1)}], {n, 0, 8}] Table[Simplify[Expand[(1/2) ((1 + Sqrt[3])^(2^n) + (1 - Sqrt[3])^(2^n))]], {n, 0, 7}] (* Artur Jasinski, Oct 11 2008 *)
Comments