A084595 For n > 0: a(n) = Sum_{r=0..2^(n-1)-1} binomial(2^n, 2r+1)*3^r.
1, 2, 16, 896, 2781184, 26794772135936, 2487085750646543836443049984, 21427531469765285263614058238314319540132878612321796096
Offset: 0
Links
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Eric Weisstein's World of Mathematics, Newton's Iteration.
Programs
-
Mathematica
For n>0: Table[Sum[Binomial[2^n, 2 r + 1]3^r, {r, 0, 2^(n - 1) - 1}], {n, 1, 8}]
-
PARI
a(n) = if (n==0, 1, sum(r=0, 2^(n-1)-1, binomial(2^n, 2*r+1)*3^r)); \\ Michel Marcus, Sep 09 2019; corrected Jun 13 2022
Comments