cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084630 a(n) = floor(C(n+7,7)/C(n+5,5)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 56, 58, 60, 63, 65, 68, 70, 73, 76, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 115, 118, 121, 125, 128, 132, 135
Offset: 0

Views

Author

Paul Barry, Jun 01 2003

Keywords

Comments

The general Somos-6 sequence terms s(n), with general coefficients and initial values s(0)..s(5), are Laurent polynomials with denominators a product of initial values raised to powers being entries in this sequence. Thus, the denominator of s(n) = Product_{k=0..5} s(k)^a(n-k-6). - Michael Somos, Apr 10 2020

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + ... - _Michael Somos_, Apr 10 2020
		

Crossrefs

Programs

  • Magma
    [Floor(Binomial(n+7,2)/21): n in [0..80]]; // G. C. Greubel, Mar 23 2023
    
  • Mathematica
    a[n_]:= Quotient[n(n+13), 42] + 1; (* Michael Somos, Apr 10 2020 *)
    Floor[Binomial[Range[0,100]+7,2]/21] (* G. C. Greubel, Mar 23 2023 *)
  • PARI
    {a(n) = n*(n + 13)\42 + 1}; /* Michael Somos, Apr 10 2020 */
    
  • SageMath
    [binomial(n+7,2)//21 for n in range(81)] # G. C. Greubel, Mar 23 2023

Formula

a(n) = 1 + floor( n*(n+13)/42 ).
From Michael Somos, Apr 10 2020: (Start)
G.f.: (1-x+x^3-x^4+x^5-x^6+x^7-x^9+x^10)/((1-x)^2*(1-x^21)).
a(n) = a(-13-n).
a(n) = a(n-21) + n + 4 for all n in Z.
0 = +a(n)*(a(n+1) -a(n+3) -a(n+4) +a(n+6)) + a(n+1)*(-a(n+1) +a(n+3) +a(n+4) -a(n+5)) + a(n+2)*(-a(n+3) +a(n+4) +a(n+5) -a(n+6)) + a(n+3)*(+a(n+3) -a(n+5) +a(n+6) -a(n+6)) + a(n+5)*(-a(n+5) +a(n+6)) for all n in Z. (End)
a(n) = floor(binomial(n+7,2)/21). - G. C. Greubel, Mar 23 2023