A084647 Hypotenuses for which there exist exactly 3 distinct integer triangles.
125, 250, 375, 500, 750, 875, 1000, 1125, 1375, 1500, 1750, 2000, 2197, 2250, 2375, 2625, 2750, 2875, 3000, 3375, 3500, 3875, 4000, 4125, 4394, 4500, 4750, 4913, 5250, 5375, 5500, 5750, 5875, 6000, 6125, 6591, 6750, 7000, 7125, 7375, 7750
Offset: 1
Keywords
Examples
a(1) = 125 = 5^3, and 125^2 = 100^2 + 75^2 = 117^2 + 44^2 = 120^2 + 35^2. - _Jean-Christophe Hervé_, Nov 11 2013
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1140 terms from Jean-Christophe Hervé)
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Crossrefs
Cf. A004144 (0), A084645 (1), A084646 (2), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Programs
-
Mathematica
Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==3,AppendTo[lst,n]],{n,4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
Formula
Terms are obtained by the products A004144(k)*A002144(p)^3 for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013
Comments