cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084649 Hypotenuses for which there exist exactly 5 distinct Pythagorean triangles.

Original entry on oeis.org

3125, 6250, 9375, 12500, 18750, 21875, 25000, 28125, 34375, 37500, 43750, 50000, 56250, 59375, 65625, 68750, 71875, 75000, 84375, 87500, 96875, 100000, 103125, 112500, 118750, 131250, 134375, 137500, 143750, 146875, 150000, 153125
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is decomposable in 5 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity 5. - Jean-Christophe Hervé, Nov 12 2013

Examples

			a(1) = 5^5, a(5) = 6*5^5, a(65) = 13^5. - _Jean-Christophe Hervé_, Nov 12 2013
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==5,AppendTo[lst,n]],{n,3*6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

Formula

Terms are obtained by the products A004144(k)*A002144(p)^5 for k, p > 0 ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013