A084649 Hypotenuses for which there exist exactly 5 distinct Pythagorean triangles.
3125, 6250, 9375, 12500, 18750, 21875, 25000, 28125, 34375, 37500, 43750, 50000, 56250, 59375, 65625, 68750, 71875, 75000, 84375, 87500, 96875, 100000, 103125, 112500, 118750, 131250, 134375, 137500, 143750, 146875, 150000, 153125
Offset: 1
Keywords
Examples
a(1) = 5^5, a(5) = 6*5^5, a(65) = 13^5. - _Jean-Christophe Hervé_, Nov 12 2013
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1019 terms from Jean-Christophe Hervé)
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Crossrefs
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Programs
-
Mathematica
Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==5,AppendTo[lst,n]],{n,3*6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
Formula
Terms are obtained by the products A004144(k)*A002144(p)^5 for k, p > 0 ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013
Comments