cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067919 Engel expansion of sin(1).

Original entry on oeis.org

2, 2, 3, 11, 14, 27, 28, 66, 212, 231, 552, 2842, 3774, 6038, 6784, 10950, 32948, 78591, 97875, 98342, 123569, 139837, 159698, 1102838, 3256476, 20329622, 34385124, 60999878, 82669919, 85820365, 389915995, 4274338879, 18907353107, 62875944378, 74931184173
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Examples

			sin(1) = 0.84147... = A049469 has the Engel expansion 1/2 + 1/(2*2) + 1/(2*2*3) + ...
		

Crossrefs

See A006784 for explanation of Engel expansions.

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Sin[1],6! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *)
  • PARI
    s=sin(1); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );

Extensions

a(1) inserted by Hauke Worpel (hw1(AT)email.com), Jun 01 2003
Edited by N. J. A. Sloane, Nov 01 2008 at the suggestion of R. J. Mathar

A084652 Engel expansion for tan(1).

Original entry on oeis.org

1, 2, 9, 30, 5838, 7748, 18941, 20860, 884009, 919276, 6366597, 74329482, 178532068, 2130862251, 2162384953, 2614341660, 4416513965, 10812791039, 11799700554, 20743576863, 36600453328, 76931780134, 109063095528
Offset: 0

Views

Author

Hauke Worpel (hw1(AT)email.com), Jun 01 2003

Keywords

Crossrefs

Showing 1-2 of 2 results.