A084660 Decimal expansion of solution of area bisectors problem.
0, 1, 9, 8, 6, 0, 3, 8, 5, 4, 1, 9, 9, 5, 8, 9, 8, 2, 0, 6, 2, 9, 2, 4, 0, 9, 1, 0, 9, 3, 6, 3, 2, 4, 2, 6, 0, 5, 6, 6, 2, 5, 1, 0, 0, 7, 7, 0, 1, 9, 1, 4, 4, 0, 5, 9, 0, 5, 1, 0, 0, 0, 7, 1, 2, 0, 0, 4, 5, 2, 1, 6, 4, 7, 7, 2, 7, 1, 0, 3, 6, 7, 0, 4, 3, 9, 7, 4, 9, 5, 2, 4, 7, 3, 1, 4, 0, 1, 5, 6, 5, 6, 5
Offset: 0
Examples
0.0198603854199589820629240910936324260566251...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Henry Bottomley, Area bisectors of a triangle.
- Zak Seidov 3-points in 3-4-5 triangle
Programs
-
Magma
SetDefaultRealField(RealField(119)); Log(8/Exp(2))/4 // G. C. Greubel, Mar 22 2023
-
Mathematica
Join[{0}, RealDigits[N[3/4*Log[2]-1/2, 108]][[1]]] (* Georg Fischer, Jul 15 2021 *)
-
PARI
3*log(2)/4-1/2 \\ Charles R Greathouse IV, Apr 13 2020
-
SageMath
numerical_approx(log(8/exp(2))/4, digits=119) # G. C. Greubel, Mar 22 2023
Formula
Equals (3*log(2) - 2)/4.
Sum_{i>0} 1/((4i-1)*4i*(4i+1)) = Sum_{i>0} 1/A069140(i). - Henry Bottomley, Jul 09 2003
Extensions
a(100) corrected by Georg Fischer, Jul 15 2021