cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084671 Primes such that the decimal concatenation of prime(n) and n is prime.

Original entry on oeis.org

5, 23, 67, 73, 157, 307, 389, 419, 449, 587, 661, 751, 1051, 1229, 1297, 1303, 1327, 1823, 1913, 1999, 2131, 2179, 2207, 2239, 2371, 2689, 2699, 3067, 3433, 3593, 3623, 3719, 3919, 3943, 4001, 4073, 4229, 4241, 4397, 4591, 4733, 4919, 4957, 4987, 5393, 5449, 5503
Offset: 1

Views

Author

Zak Seidov, Jun 29 2003

Keywords

Examples

			23 is a term because 23=prime(9) and concatenation of 23 and 9 is prime.
		

Programs

  • Mathematica
    a=ParallelTable[Prime[k],{k,1,10^6}];k=2;Monitor[Parallelize[While[True,If[ToExpression[StringJoin[ToString/@{k,FromDigits[Position[a,k]//Flatten]}]]//PrimeQ,Print[k]];k++];k],k] (* J.W.L. (Jan) Eerland, Dec 22 2022 *)
  • Python
    from itertools import islice
    from sympy import isprime, sieve
    def agen(): yield from (pn for n, pn in enumerate(sieve, 1) if isprime(int(str(pn)+str(n))))
    print(list(islice(agen(), 52))) # Michael S. Branicky, Dec 22 2022

Extensions

Edited by Charles R Greathouse IV, Apr 27 2010
a(45)-a(52) from J.W.L. (Jan) Eerland, Dec 22 2022