cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166283 Primes such that the concatenation of its index and itself is a prime.

Original entry on oeis.org

3, 7, 13, 37, 59, 61, 83, 103, 113, 149, 151, 179, 181, 197, 199, 251, 263, 269, 271, 283, 353, 421, 431, 439, 479, 487, 523, 631, 643, 653, 661, 677, 709, 769, 811, 829, 853, 937, 947, 1019, 1039, 1049, 1051, 1277, 1319, 1399, 1427, 1433, 1489, 1543, 1663
Offset: 1

Views

Author

Robert G. Wilson v, Oct 10 2009

Keywords

Examples

			The prime, 3 has an index of 2, i.e.; pi(3) = 2 and the concatenation, 23 is a prime.
		

Crossrefs

Complement of 155030, A000040, A084671.

Programs

  • Mathematica
    Select[ Prime@ Range@ 273, PrimeQ@ FromDigits@ Join[ IntegerDigits@ PrimePi@#, IntegerDigits@# ] &]
    Select[Table[{n,Prime[n]},{n,300}],PrimeQ[#[[1]]*10^IntegerLength[ #[[2]]]+ #[[2]]]&][[All,2]] (* Harvey P. Dale, Jun 01 2017 *)

A262205 Primes that are the concatenation of n, prime(n) and n.

Original entry on oeis.org

353, 7177, 9239, 113111, 5324153, 5726957, 5927759, 6934769, 8141981, 9750997, 101547101, 123677123, 131739131, 153883153, 1791063179, 1891129189, 2011229201, 2071279207, 2311453231, 2491579249, 2631669263, 2691723269, 2791801279
Offset: 1

Views

Author

Altug Alkan, Sep 15 2015

Keywords

Examples

			353 is a prime number that is concatenation of 3, prime(3) and 3.
7177 is a prime number that is concatenation of 7, prime(7) and 7.
9239 is a prime number that is concatenation of 9, prime(9) and 9.
		

Crossrefs

Programs

  • Magma
    [p: n in [1..400] | IsPrime(p) where p is Seqint(Intseq(n) cat Intseq(NthPrime(n)) cat Intseq(n))]; // Bruno Berselli, Sep 15 2015
  • Mathematica
    f[n_] := Block[{d = IntegerDigits@ n, p = IntegerDigits@ Prime@ n}, FromDigits@ Join[d, p, d]]; Select[f /@ Range@ 300, PrimeQ] (* Michael De Vlieger, Sep 15 2015 *)
  • PARI
    for(n=1, 1e3, if(isprime(k=eval(Str(n, prime(n), n))), print1(k", ")))
    

A243886 Primes p = prime(n): such that p.n and n.p both are prime, where (.) indicates concatenation.

Original entry on oeis.org

661, 1051, 1999, 2179, 3433, 3593, 3719, 4073, 4591, 4733, 5449, 5503, 6079, 6481, 7109, 7211, 7489, 8293, 8513, 9901, 10273, 10529, 11821, 12721, 14107, 14591, 14879, 15263, 15877, 18149, 19559, 22027, 22129, 22571, 23339, 24527, 25357, 26881, 27337, 34259
Offset: 1

Views

Author

K. D. Bajpai, Jun 13 2014

Keywords

Comments

Intersection of A084671 and A166283.

Examples

			661 is in the sequence because 661 = prime(121): Concatenations of [661.121 = 661121] and concatenation of [121.661 = 121661] which are also primes.
1051 is in the sequence because 1051 = prime(177): Concatenation of [1051.177 = 1051177] and concatenation of [177.1051 = 1771051] which are also primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(StringTools): A243886:= proc() local p,k1,k2; p:=ithprime(n); k1:=parse (cat (p,n)); k2:=parse(cat(n,p)); if isprime(k1)and isprime(k2) then RETURN (p); fi; end: seq(A243886 (), n=1..5000);
  • Mathematica
    Select[Prime [Range[5000]], PrimeQ[FromDigits[Join[IntegerDigits [PrimePi [#]], IntegerDigits [#]]]] && PrimeQ [FromDigits [Join [IntegerDigits[#], IntegerDigits [PrimePi [#]]]]] &]
Showing 1-3 of 3 results.