cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084708 Number of set partitions up to rotations and reflections.

Original entry on oeis.org

1, 2, 3, 7, 12, 37, 93, 354, 1350, 6351, 31950, 179307, 1071265, 6845581, 46162583, 327731950, 2437753740, 18948599220, 153498350745, 1293123243928, 11306475314467, 102425554299516, 959826755336242, 9290811905391501
Offset: 1

Views

Author

Wouter Meeussen, Jul 02 2003

Keywords

Comments

Combines the symmetry operations of A080107 and A084423.
Equivalently, number of n-bead bracelets using any number of unlabeled (interchangable) colors. - Andrew Howroyd, Sep 25 2017

Examples

			SetPartitions[6] is the first to decompose differently from A084423: 4 cycles of length 1, 2 of 2, 9 of 3, 16 of 6, 6 of 12.
a(7) = 1 + A056357(7) + A056358(7) + A056359(7) + A056360(7) + A056361(7) + 1 = 1 + 8 + 31 + 33 + 16 + 3 + 1 = 93.
		

Crossrefs

Programs

  • Mathematica
    <A080107 *); Table[{Length[ # ], First[ # ]}&/@ Split[Sort[Length/@Split[Sort[First[Sort[Flatten[ {#, Map[Sort, (#/. i_Integer:>w+1-i), 2]}& @(NestList[Sort[Sort/@(#/. i_Integer :> Mod[i+1, w, 1])]&, #, w]), 1]]]&/@SetPartitions[w]]]]], {w, 1, 10}]
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; a[n_]:=1/n*Plus@@(EulerPhi[ # ]u[Quotient[n,# ],# ]&/@Divisors[n]); Table[a[n]/2+If[EvenQ[n],u[n/2,2],Sum[Binomial[n/2-1/2,k] u[k,2], {k,0,n/2-1/2}]]/2,{n,40}] (* Wouter Meeussen, Dec 06 2008 *)

Formula

a(n) = (A080107(n)+A084423(n))/2. - Wouter Meeussen and Vladeta Jovovic, Nov 28 2008

Extensions

a(12) from Vladeta Jovovic, Jul 15 2007
More terms from Vladeta Jovovic's formula given in Mathematica line. - Wouter Meeussen, Dec 06 2008