cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084758 The slowest increasing sequence of primes such that difference of successive terms is unique.

Original entry on oeis.org

2, 3, 5, 11, 19, 23, 37, 47, 59, 79, 97, 113, 137, 163, 191, 223, 257, 293, 331, 353, 383, 431, 487, 541, 587, 631, 673, 733, 773, 823, 881, 947, 1009, 1061, 1129, 1193, 1277, 1367, 1439, 1531, 1601, 1697, 1777, 1871, 1949, 2053, 2129, 2203, 2309, 2411, 2521
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 17 2003

Keywords

Comments

The sequence of successive differences is 1,2,6,8,4,14,10,12,20,18,16,... Conjecture: every even number is a term of this sequence. For every even number e there exists some k such that a(k) - a(k-1) = e.
The slowest increasing sequence of primes such that each difference between successive terms is unique. - Zak Seidov, Feb 10 2015

Examples

			After 23, the next term is 37 and not 29 or 31 as 29-23= 11-5 =6, 31-23 = 19-11=8.
		

Crossrefs

Programs

  • Mathematica
    diffs = {}; prms = {2}; p = 2; Do[While[p = NextPrime[p]; d = p - prms[[-1]]; MemberQ[diffs, d]]; AppendTo[diffs, d]; AppendTo[prms, p], {100}]; prms (* T. D. Noe, Nov 01 2011 *)

Extensions

More terms from David Wasserman, Jan 05 2005
Definition corrected by Zak Seidov, Nov 01 2011
Definition corrected by Zak Seidov, Feb 11 2015