A084764 a(n) = 2*a(n-1)^2 - 1, a(0)=1, a(1)=4.
1, 4, 31, 1921, 7380481, 108942999582721, 23737154316161495960243527681, 1126904990058528673830897031906808442930637286502826475521
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..11
- H. S. Wilf, Limit of a sequence, Elementary Problem E 1093, Amer. Math. Monthly 61 (1954), 424-425.
- Jeffrey Shallit, Rational numbers with non-terminating, non-periodic modified Engel-type expansions, Fib. Quart., 31 (1993), 37-40.
Programs
-
Magma
[n le 2 select 4^(n-1) else 2*Self(n-1)^2 - 1: n in [1..10]]; // G. C. Greubel, May 16 2023
-
Mathematica
a[n_]:= a[n]= If[n<2, 4^n, 2 a[n-1]^2 -1]; Table[a[n], {n,0,10}] Join[{1},NestList[2#^2-1&,4,10]] (* Harvey P. Dale, Oct 31 2013 *)
-
SageMath
def A084764(n): return 1 if n==0 else chebyshev_T(2^(n-1), 4) [A084764(n) for n in range(11)] # G. C. Greubel, May 16 2023
Formula
With x=4+sqrt(15), y=4-sqrt(15): a(n+1) = (x^(2^n) + y^(2^n))/2.
a(n) = A005828(n-1), n>0. - R. J. Mathar, Sep 17 2008
a(n) = A001091(2^(n-1)) with a(0) = 1; i.e. a(n) = ChebyshevT(2^(n-1), 4) with a(0) = 1. - G. C. Greubel, May 16 2023
Comments