cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357366 Expansion of Product_{k>=0} 1 / (1 - x^(2^k) - x^(2^(k+1)))^(2^k).

Original entry on oeis.org

1, 1, 4, 5, 18, 23, 59, 82, 203, 285, 610, 895, 1838, 2733, 5217, 7950, 14763, 22713, 40526, 63239, 110652, 173891, 297529, 471420, 796706, 1268126, 2116508, 3384634, 5606444, 8991078, 14791302, 23782380, 38955441, 62737821, 102388280, 165126101, 268844542, 433970643
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 37; CoefficientList[Series[Product[1/(1 - x^(2^k) - x^(2^(k + 1)))^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 37; A[] = 1; Do[A[x] = A[x^2]^2/(1 - x - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = A(x^2)^2 / (1 - x - x^2).
a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1)))^(2^k) = 11.1991985012843182084779984477952870732899201240395056... and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 08 2022
Showing 1-1 of 1 results.