A000094 Number of trees of diameter 4.
0, 0, 0, 0, 1, 2, 5, 8, 14, 21, 32, 45, 65, 88, 121, 161, 215, 280, 367, 471, 607, 771, 980, 1232, 1551, 1933, 2410, 2983, 3690, 4536, 5574, 6811, 8317, 10110, 12276, 14848, 17941, 21600, 25977, 31146, 37298, 44542, 53132, 63218, 75131, 89089
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Apr 12 2019: (Start) The a(5) = 1 through a(9) = 14 partitions of n-1 with at least two parts of size 2 or larger, or non-hooks, are the following. The Heinz numbers of these partitions are given by A105441. (22) (32) (33) (43) (44) (221) (42) (52) (53) (222) (322) (62) (321) (331) (332) (2211) (421) (422) (2221) (431) (3211) (521) (22111) (2222) (3221) (3311) (4211) (22211) (32111) (221111) The a(5) = 1 through a(9) = 14 partitions of n-1 whose maximum part minus minimum part is at least 2 are the following. The Heinz numbers of these partitions are given by A307516. (31) (41) (42) (52) (53) (311) (51) (61) (62) (321) (331) (71) (411) (421) (422) (3111) (511) (431) (3211) (521) (4111) (611) (31111) (3221) (3311) (4211) (5111) (32111) (41111) (311111) The a(5) = 1 through a(9) = 14 partitions of n-1 with at least two parts that are smaller than the largest part are the following. The Heinz numbers of these partitions are given by A307517. (211) (311) (321) (322) (422) (2111) (411) (421) (431) (2211) (511) (521) (3111) (3211) (611) (21111) (4111) (3221) (22111) (3311) (31111) (4211) (211111) (5111) (22211) (32111) (41111) (221111) (311111) (2111111) (End)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Christian G. Bower, Table of n, a(n) for n = 1..500
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Miloslav Znojil, Perturbation theory near degenerate exceptional points, arXiv:2008.00479 [math-ph], 2020.
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
g:=x/product(1-x^j,j=1..70)-x-x^2/(1-x)^2: gser:=series(g,x=0,48): seq(coeff(gser,x,n),n=1..46); # Emeric Deutsch, May 01 2006 A000094 := proc(n) combinat[numbpart](n-1)-n+1 ; end proc: # R. J. Mathar, May 17 2016
-
Mathematica
t=Table[PartitionsP[n]-n,{n,0,45}]; ReplacePart[t,0,1] (* Clark Kimberling, Mar 05 2012 *) CoefficientList[1/QPochhammer[x]-x/(1-x)^2-1+O[x]^50, x] (* Jean-François Alcover, Feb 04 2016 *)
Formula
a(n+1) = A000041(n)-n for n>0. - John W. Layman
G.f.: x/product(1-x^j,j=1..infinity)-x-x^2/(1-x)^2. - Emeric Deutsch, May 01 2006
G.f.: sum(sum(x^(i+j+1)/product(1-x^k, k=i..j), i=1..j-2), j=3..infinity). - Emeric Deutsch, May 01 2006
a(n+1) = Sum_{m=1..n} A083751(m). - Gregory Gerard Wojnar, Oct 13 2020
Extensions
More terms from Franklin T. Adams-Watters, Jan 13 2006
Comments