A084848 a(n) is the number of quadratic residues of A085635(n).
1, 2, 2, 3, 4, 4, 7, 8, 12, 14, 16, 16, 24, 28, 32, 42, 48, 48, 48, 64, 84, 96, 112, 144, 144, 176, 192, 192, 288, 336, 336, 504, 576, 576, 704, 864, 1008, 1056, 1152, 1232, 1152, 1344, 1728, 1920, 2016, 2016, 2352
Offset: 1
Keywords
Examples
a(2)=2 because there are 2 different quadratic residues modulo 3, so 3 has 66.67% of quadratic residues density, while 2 has a 100%, so 3 has the least quadratic residues density up to 3.
Links
- Keith F. Lynch, Table of n, a(n) for n = 1..200 (first 111 terms from Hugo Pfoertner).
- Andreas Enge, William Hart, Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016-2018.
Programs
-
Mathematica
Block[{s = Range[0, 2^15 + 1]^2, t}, t = Array[{#1/#2, #2} & @@ {#, Length@ Union@ Mod[Take[s, # + 1], #]} &, Length@ s - 1]; Map[t[[All, -1]][[FirstPosition[t[[All, 1]], #][[1]] ]] &, Union@ FoldList[Max, t[[All, 1]] ] ] ] (* Michael De Vlieger, Sep 10 2018 *)
-
PARI
a000224(n)=my(f=factor(n));prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ from Charles R Greathouse IV r=2;for(k=1,1e6,v=a000224(k);t=v/k;if(t
Hugo Pfoertner, Aug 24 2018
Formula
Extensions
More terms from Jud McCranie, Jul 18 2003
a(1) corrected by Hugo Pfoertner, Aug 23 2018
Comments