cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084851 Binomial transform of binomial(n+2,2).

Original entry on oeis.org

1, 4, 13, 38, 104, 272, 688, 1696, 4096, 9728, 22784, 52736, 120832, 274432, 618496, 1384448, 3080192, 6815744, 15007744, 32899072, 71827456, 156237824, 338690048, 731906048, 1577058304, 3388997632, 7264534528, 15535702016, 33151778816
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Essentially the same as A049611.

Examples

			From _Bruno Berselli_, Jul 17 2018: (Start)
Let the triangle:
   1
   3,  4
   6,  9,  13
  10, 16,  25,  38
  15, 25,  41,  66, 104
  21, 36,  61, 102, 168, 272
  28, 49,  85, 146, 248, 416,  688
  36, 64, 113, 198, 344, 592, 1008, 1696, etc.
where the first column is A000217 (without 0). The other terms are calculated with the recurrence T(r, c) = T(r-1, c-1) + T(r, c-1).
The sequence is the right side of the triangle.
(End)
		

Crossrefs

Cf. A000217, A049611, A058396 (first differences).

Programs

  • Magma
    [(n^2+7*n+8)*2^(n-3): n in [0..40]]; // Vincenzo Librandi, Aug 03 2014
  • Maple
    a := n -> hypergeom([-n, 3], [1], -1);
    seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
  • Mathematica
    CoefficientList[ Series[(1 - x)^2/(1 - 2 x)^3, {x, 0, 28}], x] (* Robert G. Wilson v, Jun 28 2005 *)
    LinearRecurrence[{6,-12,8},{1,4,13},30] (* Harvey P. Dale, Aug 05 2019 *)

Formula

G.f.: (1 - x)^2/(1 - 2*x)^3.
a(n) = (n^2 + 7*n + 8)*2^(n - 3).
a(n) = Sum_{k=0..n} C(n, k)*C(k+2, 2).
a(n) = A049611(n+1).