A084851 Binomial transform of binomial(n+2,2).
1, 4, 13, 38, 104, 272, 688, 1696, 4096, 9728, 22784, 52736, 120832, 274432, 618496, 1384448, 3080192, 6815744, 15007744, 32899072, 71827456, 156237824, 338690048, 731906048, 1577058304, 3388997632, 7264534528, 15535702016, 33151778816
Offset: 0
Examples
From _Bruno Berselli_, Jul 17 2018: (Start) Let the triangle: 1 3, 4 6, 9, 13 10, 16, 25, 38 15, 25, 41, 66, 104 21, 36, 61, 102, 168, 272 28, 49, 85, 146, 248, 416, 688 36, 64, 113, 198, 344, 592, 1008, 1696, etc. where the first column is A000217 (without 0). The other terms are calculated with the recurrence T(r, c) = T(r-1, c-1) + T(r, c-1). The sequence is the right side of the triangle. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Igor Makhlin, Gröbner fans of Hibi ideals, generalized Hibi ideals and flag varieties, arXiv:2003.02916 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Magma
[(n^2+7*n+8)*2^(n-3): n in [0..40]]; // Vincenzo Librandi, Aug 03 2014
-
Maple
a := n -> hypergeom([-n, 3], [1], -1); seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
-
Mathematica
CoefficientList[ Series[(1 - x)^2/(1 - 2 x)^3, {x, 0, 28}], x] (* Robert G. Wilson v, Jun 28 2005 *) LinearRecurrence[{6,-12,8},{1,4,13},30] (* Harvey P. Dale, Aug 05 2019 *)
Formula
G.f.: (1 - x)^2/(1 - 2*x)^3.
a(n) = (n^2 + 7*n + 8)*2^(n - 3).
a(n) = Sum_{k=0..n} C(n, k)*C(k+2, 2).
a(n) = A049611(n+1).
Comments