cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A279769 Numbers n such that the sum of digits of 9n is 18.

Original entry on oeis.org

11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 131, 132, 133, 141
Offset: 1

Views

Author

M. F. Hasler, Dec 18 2016

Keywords

Comments

Differs from A084854 from a(55) = 110 on.
Numbers n such that A008591(n) is a term of A235228. - Felix Fröhlich, Dec 18 2016
The digital sum of 9n is always a multiple of 9, and never zero. For most numbers < 100, the digital sum is equal to 9, but for example in the range [91..110] all numbers except 100 have their digital sum equal to 18. The b-file / graph gives a hint on the "asymptotic" distribution / density of this set. After a "flat" range like that at [91..110] there comes a record gap. Sizes [and upper ends] of record gaps are: 10 [a(2) = 21], 11 [a(56) = 121, a(119) = 231, a(188) = 341, ..., a(553) = 891, a(616) = 1001], 21 [a(671) = 1121], 31 [a(1331) = 2231], ..., 91 [a(4339) = 8891], 101 [a(4621) = 10001], 121 [a(4841) = 11121], 231 [a(9176) = 22231], ..., 891 [a(24217) = 88891], 1001 [a(25213) = 100001], 1121 [a(25928) = 111121], 2231 [a(47510) = 222231], ..., 8891 [a(108577) = 888891], 10001 [a(111574) = 1000001], 11121 [a(113576) = 1111121], 22231 [a(202511) = 2222231], ..., 88891 [a(416215) = 8888891], ... - M. F. Hasler, Dec 22 2016

Crossrefs

Cf. A007953 (digital sum), A008591, A084854.
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 141, Total@ IntegerDigits[9 #] == 18 &]
  • PARI
    is(n) = sumdigits(9*n)==18 \\ Felix Fröhlich, Dec 18 2016

Formula

a(n) = A235228(n)/9.

A279777 Numbers k such that the sum of digits of 9k is 27.

Original entry on oeis.org

111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...

Crossrefs

Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.

Programs

  • Mathematica
    Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(9*n)==27

A066686 Array T(i,j) read by antidiagonals, where T(i,j) is the concatenation of i and j (1<=i, 1<=j).

Original entry on oeis.org

11, 12, 21, 13, 22, 31, 14, 23, 32, 41, 15, 24, 33, 42, 51, 16, 25, 34, 43, 52, 61, 17, 26, 35, 44, 53, 62, 71, 18, 27, 36, 45, 54, 63, 72, 81, 19, 28, 37, 46, 55, 64, 73, 82, 91, 110, 29, 38, 47, 56, 65, 74, 83, 92, 101, 111, 210, 39, 48, 57, 66, 75, 84, 93, 102, 111
Offset: 1

Views

Author

Robert G. Wilson v, Jan 11 2002

Keywords

Comments

The element at T(i,j) is the {(i+j-1)(i+j-2)/2 + i}-th element read in the sequence.

Examples

			The array begins
11 12 13 14 15 16 17 18 19 110 ...
21 22 23 24 25 26 27 28 29 210 ...
31 32 33 34 35 36 37 38 39 310 ...
41 42 43 44 45 46 47 48 49 410 ...
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, ToExpression[ StringJoin[ ToString[k], ToString[n - k]]]], {n, 2, 13}, {k, 1, n - 1} ]; a
  • Python
    def T(i, j): return int(str(i) + str(j))
    def auptodiag(maxd):
        return [T(i, d+1-i) for d in range(1, maxd+1) for i in range(1, d+1)]
    print(auptodiag(12)) # Michael S. Branicky, Nov 21 2021

Formula

T(i, j) = i*10^A055642(i) + j. - Michael S. Branicky, Nov 21 2021

A067574 Array T(i,j) read by ascending antidiagonals, where T(i,j) is the concatenation of i and j (1<=i, 1<=j).

Original entry on oeis.org

11, 21, 12, 31, 22, 13, 41, 32, 23, 14, 51, 42, 33, 24, 15, 61, 52, 43, 34, 25, 16, 71, 62, 53, 44, 35, 26, 17, 81, 72, 63, 54, 45, 36, 27, 18, 91, 82, 73, 64, 55, 46, 37, 28, 19, 101, 92, 83, 74, 65, 56, 47, 38, 29, 110, 111, 102, 93, 84, 75, 66, 57, 48, 39, 210, 111
Offset: 1

Views

Author

Robert G. Wilson v, Jan 30 2002

Keywords

Comments

The antidiagonals are read in the opposite direction to those in A066686.

Examples

			The array begins
11 12 13 14 15 16 17 18 19 110 ...
21 22 23 24 25 26 27 28 29 210 ...
31 32 33 34 35 36 37 38 39 310 ...
41 42 43 44 45 46 47 48 49 410 ...
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, ToExpression[ StringJoin[ ToString[i - j], ToString[j]]]], {i, 2, 13}, {j, 1, i - 1} ]; a
  • Python
    def T(i, j): return int(str(i) + str(j))
    def auptodiag(maxd):
        return [T(d+1-j, j) for d in range(1, maxd+1) for j in range(1, d+1)]
    print(auptodiag(12)) # Michael S. Branicky, Nov 21 2021

Formula

T(i, j) = i*10^A055642(i) + j. - Michael S. Branicky, Nov 21 2021

A084855 Triangular array, read by rows: T(n,k) = concatenated decimal representations of k and n, 1<=k<=n.

Original entry on oeis.org

11, 12, 22, 13, 23, 33, 14, 24, 34, 44, 15, 25, 35, 45, 55, 16, 26, 36, 46, 56, 66, 17, 27, 37, 47, 57, 67, 77, 18, 28, 38, 48, 58, 68, 78, 88, 19, 29, 39, 49, 59, 69, 79, 89, 99, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 111, 211, 311, 411, 511, 611, 711, 811, 911, 1011, 1111
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2003

Keywords

Crossrefs

Programs

  • Python
    def T(n, k): return int(str(k) + str(n))
    def auptorow(maxrow):
        return [T(n, k) for n in range(1, maxrow+1) for k in range(1, n+1)]
    print(auptorow(11)) # Michael S. Branicky, Nov 21 2021

Formula

T(n, k) = k*10^A055642(n) + n.
T(n, n) = A020338(n).
Showing 1-5 of 5 results.