A084866 Primes that can be written in the form 2*p^2 + 3*q^2 with p and q prime.
83, 173, 197, 269, 317, 389, 461, 557, 653, 701, 797, 941, 1091, 1109, 1181, 1229, 1637, 1709, 1949, 1997, 2069, 2141, 2309, 2531, 2549, 2621, 2789, 2861, 3221, 3389, 3461, 3581, 3821, 4157, 4229, 4349, 4493, 5051, 5261, 5381, 5501, 5693
Offset: 1
Keywords
Examples
A000040(40) = 173 = 98 + 75 = 2*7^2 + 3*5^2 = 2*A000040(4)^2 + 3*A000040(3)^2, therefore 173 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # to get terms <= N P:= select(isprime, [2,seq(i,i=3..floor((N/2)^(1/2)))]): m:= nops(P): R:= {}: for p in P do for i from 2 to m while 3*P[i]^2 <= N - 2*p^2 do v:= 2*p^2 + 3*P[i]^2; if isprime(v) then R:= R union {v} fi od od: sort(convert(R,list)); # Robert Israel, Nov 05 2020
-
Mathematica
nn = 10^4; (* to get terms <= nn *) P = Select[Join[{2}, Range[3, Floor[Sqrt[nn/2]]]], PrimeQ]; m = Length[P]; R = {}; Do[For[i = 2, 3*P[[i]]^2 <= nn - 2*p^2, i++, v = 2*p^2 + 3*P[[i]]^2; If[PrimeQ[v], R = R ~Union~ {v}]], {p, P}]; Sort[R] (* Jean-François Alcover, Dec 13 2021, after Robert Israel *)
Comments