A084891 Multiples of 2, 3, 5, or 7, but not 7-smooth.
22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Diagram showing numbers k in this sequence instead as k mod 210, in black, else white if k is coprime to 210, purple if k = 1, red if k | 210, and gold if rad(k) | 210, magnification 5X.
- Eric Weisstein's World of Mathematics, Smooth Number.
Programs
-
Mathematica
okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7; Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
-
PARI
mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth { local(x,a,j,f,ln); for(x=m,n, f=0; if(gcd(x,210)>1, a = ifactor(x); for(j=1,length(a), if(a[j]>7,f=1;break); ); if(f,print1(x",")); ); ); } ifactor(n) = \\ The vector of the prime factors of n with multiplicity. { local(f,j,k,flist); flist=[]; f=Vec(factor(n)); for(j=1,length(f[1]), for(k = 1,f[2][j],flist = concat(flist,f[1][j]) ); ); return(flist) } \\ Cino Hilliard, Jul 03 2009
-
Python
from sympy import primefactors def ok(n): pf = set(primefactors(n)) return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7} print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021
Comments