cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084891 Multiples of 2, 3, 5, or 7, but not 7-smooth.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2003

Keywords

Comments

Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473.
A020639(a(n)) <= 7, A006530(a(n)) > 7.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
    Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
  • PARI
    mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth
    {
    local(x,a,j,f,ln);
    for(x=m,n,
    f=0;
    if(gcd(x,210)>1,
    a = ifactor(x);
    for(j=1,length(a),
    if(a[j]>7,f=1;break);
    );
    if(f,print1(x","));
    );
    );
    }
    ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
    {
    local(f,j,k,flist);
    flist=[];
    f=Vec(factor(n));
    for(j=1,length(f[1]),
    for(k = 1,f[2][j],flist = concat(flist,f[1][j])
    );
    );
    return(flist)
    }
    \\ Cino Hilliard, Jul 03 2009
    
  • Python
    from sympy import primefactors
    def ok(n):
        pf = set(primefactors(n))
        return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
    print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021