A084928 If the numbers 1 to n^3 are arranged in a cubic array, a(n) is the minimum number of primes in each row of the n^2 rows in the "east-west view" that can have primes.
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2
Offset: 1
Keywords
Examples
For the case n=3, the numbers are arranged in a cubic array as follows: 1..2..3........10.11.12........19.20.21 4..5..6........13.14.15........22.23.24 7..8..9........16.17.18........25.26.27 The first row is (1,2,3), the second is (4,5,6), etc. Surprisingly, a(n) = 0 for all n from 3 to 66. It appears that a(n) > 0 for n > 128. This has been confirmed up to n = 1000.
References
- See A083382 for references and links to the two-dimensional case.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..900
Programs
-
Mathematica
Table[minP=n; Do[s=0; Do[If[PrimeQ[n*(c-1)+r], s++ ], {r, n}]; minP=Min[s, minP], {c, n^2}]; minP, {n, 100}]
-
PARI
A084928(n) = { my(m=-1); for(i=0,(n^2)-1,my(s=sum(j=(i*n),((i+1)*n)-1,isprime(1+j))); if((m<0) || (s < m), m = s)); (m); }; \\ Antti Karttunen, Jan 01 2019
Extensions
More terms from Antti Karttunen, Jan 01 2019
Comments