A084930 Triangle of coefficients of Chebyshev polynomials T_{2n+1} (x).
1, -3, 4, 5, -20, 16, -7, 56, -112, 64, 9, -120, 432, -576, 256, -11, 220, -1232, 2816, -2816, 1024, 13, -364, 2912, -9984, 16640, -13312, 4096, -15, 560, -6048, 28800, -70400, 92160, -61440, 16384, 17, -816, 11424, -71808, 239360, -452608, 487424, -278528, 65536, -19, 1140, -20064, 160512, -695552
Offset: 0
Examples
The triangle a(n,k): n 2n+1\k 0 1 2 3 4 5 6 7 8 9 10 ... 0 1: 1 1 3: -3 4 2 5: 5 -20 16 3 7: -7 56 -112 64 4 9: 9 -120 432 -576 256 5 11: -11 220 -1232 2816 -2816 1024 6 13: 13 -364 2912 -9984 16640 -13312 4096 7 15: -15 560 -6048 28800 -70400 92160 -61440 16384 8 17: 17 -816 11424 -71808 239360 -452608 487424 -278528 65536 9 19: -19 1140 -20064 160512 -695552 1770496 -2723840 2490368 -1245184 262144 10 21: 21 -1540 33264 -329472 1793792 -5870592 12042240 -15597568 12386304 -5505024 1048576 ... formatted and extended by _Wolfdieter Lang_, Aug 02 2014. --------------------------------------------------------------------------------------------------- First few polynomials T_{2n+1}(x) are 1*x - 3*x + 4*x^3 5*x - 20*x^3 + 16*x^5 - 7*x + 56*x^3 - 112*x^5 + 64*x^7 9*x - 120*x^3 + 432*x^5 - 576*x^7 + 256*x^9
References
- A. Cayley, On an Expression for 1 +- sin(2p+1)u in Terms of sin u, Messenger of Mathematics, 5 (1876), pp. 7-8 = Mathematical Papers Vol. 10, n. 630, pp. 1-2.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990. p. 37, eq. (1.96) and p. 4, eq. (1.10).
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 795.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Mathematica
row[n_] := (T = ChebyshevT[2*n+1, x]; Coefficient[T, x, #]& /@ Range[1, Exponent[T, x], 2]); Table[row[n], {n, 0, 9} ] // Flatten (* Jean-François Alcover, Aug 06 2014 *)
Formula
Alternate rows of A008310.
a(n,k)=((-1)^(n-k))*(2^(2*k))*binomial(n+1+k,2*k+1)*(2*n+1)/(n+1+k) if n>=k>=0 else 0.
From Wolfdieter Lang, Aug 02 2014: (Start)
a(n,k) = [x^(2*k+1)] T_{2*n+1}(x), n >= k >= 0.
G.f. for row polynomials: x*(1-z)/(1 + 2*(1- 2*x^2)*z + z^2). (End)
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 26 2003
Edited; example rewritten (to conform with the triangle) by Wolfdieter Lang, Aug 02 2014
Comments