cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084937 Smallest number which is coprime to the last two predecessors and has not yet appeared; a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 9, 8, 11, 13, 6, 17, 19, 10, 21, 23, 16, 15, 29, 14, 25, 27, 22, 31, 35, 12, 37, 41, 18, 43, 47, 20, 33, 49, 26, 45, 53, 28, 39, 55, 32, 51, 59, 38, 61, 63, 34, 65, 57, 44, 67, 69, 40, 71, 73, 24, 77, 79, 30, 83, 89, 36, 85, 91, 46, 75, 97, 52, 81
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2003

Keywords

Comments

Equivalently, this is the lexicographically earliest sequence of positive numbers satisfying the condition that each term is relatively prime to the next two terms. - N. J. A. Sloane, Nov 03 2014
Empirically, the points lie roughly on two lines: if n == 2 mod 3 then a(n) ~= 2n/3, otherwise a(n) ~= 4n/3. See A249680-A249683 for the three trisections, and see also the Sigrist scatterplot. - N. J. A. Sloane, Nov 03 2014, Nov 04 2014
All primes and prime powers occur, and the primes occur in their natural order. For any prime p, p occurs before p^2 before p^3, ...
Empirically, this is a permutation of the natural numbers, with inverse A084933: a(A084933(n))=A084933(a(n))=n. It seems that there are no further fixed points after {1,2,3,8,33,39}. Empirically, a(n) mod 2 = A011655(n+1); ABS(a(n)-n) < n; a(3*n+1)>n; a(3*n+2)Reinhard Zumkeller, Dec 16 2007
For a(n) mod 3 see A249603. - N. J. A. Sloane, Nov 03 2014
A249694(n) = GCD(a(n),a(n+3)). - Reinhard Zumkeller, Nov 04 2014

Crossrefs

Cf. A084933 (inverse), A103683, A121216, A247665, A090252, A249603 (read mod 3), A249680, A249681, A249682, A249683 (trisections), A249694, A011655, A249684 (numbers that take a record number of steps to appear), A249685.
Indices of primes: A249602, and of prime powers: A249575.
Running counts of missing numbers: A249686, A250099, A250100; A249777, A249856, A249857.
Where a(3n)>a(3n+1): A249689.
See also A353706, A353709, A353710.

Programs

  • Haskell
    import Data.List (delete)
    a084937 n = a084937_list !! (n-1)
    a084937_list = 1 : 2 : f 2 1 [3..] where
       f x y zs = g zs where
          g (u:us) | gcd y u > 1 || gcd x u > 1 = g us
                   | otherwise = u : f u x (delete u zs)
    -- Reinhard Zumkeller, Jan 28 2012
    
  • Maple
    N:= 1000: # to get a(n) until the first entry > N
    a[1]:= 1: a[2]:= 2:
    R:= {$3..N}:
    for n from 3 while R <> {} do
      success:= false;
      for r in R do
        if igcd(r,a[n-1]) = 1 and igcd(r,a[n-2])=1 then
           a[n]:= r;
           R:= R minus {r};
           success:= true;
           break
        fi
      od:
      if not success then break fi;
    od:
    seq(a[i], i = 1 .. n-1); # Robert Israel, Dec 12 2014
  • Mathematica
    lst={1,2,3}; unused=Range[4,100]; While[n=Select[unused, CoprimeQ[#, lst[[-1]]] && CoprimeQ[#, lst[[-2]]] &, 1]; n != {}, AppendTo[lst, n[[1]]]; unused=DeleteCases[unused, n[[1]]]]; lst
    f[s_] := Block[{k = 1, l = Take[s, -2]}, While[ Union[ GCD[k, l]] != {1} || MemberQ[s, k], k++]; Append[s, k]]; Nest[f, {1, 2}, 67] (* Robert G. Wilson v, Jun 26 2011 *)
  • PARI
    taken(k,t=v[k])=for(i=3,k-1, if(v[i]==t, return(1))); 0
    step(k,g)=while(gcd(k,g)>1, k++); k
    first(n)=local(v=vector(n,i,i)); my(nxt=3,t); for(k=3,n, v[k]=step(nxt, t=v[k-1]*v[k-2]); while(taken(k), v[k]=step(v[k]+1,t)); if(v[k]==t, while(taken(k+1,t++),))); v \\ Charles R Greathouse IV, Aug 26 2016
  • Python
    from math import gcd
    A084937_list, l1, l2, s, b = [1,2], 2, 1, 3, set()
    for _ in range(10**3):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) == 1:
                A084937_list.append(i)
                l2, l1 = l1, i
                b.add(i)
                while s in b:
                    b.remove(s)
                    s += 1
                break
            i += 1 # Chai Wah Wu, Dec 09 2014
    

Extensions

Entry revised by N. J. A. Sloane, Nov 04 2014