A084949 a(n) = Product_{i=0..n-1} (9*i+2).
1, 2, 22, 440, 12760, 484880, 22789360, 1276204160, 82953270400, 6138542009600, 509498986796800, 46873906785305600, 4734264585315865600, 520769104384745216000, 61971523421784680704000, 7932354997988439130112000, 1086732634724416160825344000, 158662964669764759480500224000
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..329
Crossrefs
Programs
-
GAP
List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019
-
Magma
[1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019
-
Maple
a:= n-> product(9*i+2,i=0..n-1); seq(a(j),j=0..20);
-
Mathematica
Table[9^n*Pochhammer[2/9, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
PARI
vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019
-
Sage
[product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
Formula
a(n) = (-7)^n*Sum_{k=0..n} (9/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: (1-9*x)^(-2/9). - Robert Israel, Mar 22 2017
D-finite with recurrence: a(n) + (-9*n+7)*a(n-1) = 0. - R. J. Mathar, Jan 20 2020
Sum_{n>=0} 1/a(n) = 1 + (e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). - Amiram Eldar, Dec 21 2022
a(n) ~ sqrt(2*Pi) * (9/e)^n * n^(n-5/18) / Gamma(2/9). - Amiram Eldar, Aug 30 2025