A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.
670873, 639281, 463722, 292684, 260522, 256245, 244265, 228429, 215476, 213675, 203053, 167894, 144069, 137748, 119533, 108882, 92024, 81248, 63042, 56651, 52808, 52185, 36338, 36089, 35698, 29717, 27520, 26189, 23440, 23096, 23005
Offset: 1
Keywords
Examples
a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
References
- R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
- P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.
Links
- H. J. Smith, Table of n, a(n) for n = 1..128
- H. J. Smith, Andrica's Conjecture
- Eric Weisstein's World of Mathematics, Andrica's Conjecture.
Comments