A084978 Number of ways to represent n as a+b*(c+d*(e+f*(...x+y*(z)...))) in positive integers.
1, 2, 5, 11, 25, 51, 110, 221, 456, 918, 1864, 3729, 7528, 15057, 30227, 60485, 121205, 242411, 485337, 970675, 1942307, 3884730, 7771327, 15542655, 31089330, 62178686, 124364903, 248730268, 497475717, 994951435, 1989934099, 3979868199
Offset: 1
Examples
a(3) = 5: 3 = 2+1(1) = 1+2(1) = 1+1(2) = 1+1(1+1(1)).
Links
- Robert Israel, Table of n, a(n) for n = 1..3305
Programs
-
Maple
f:= proc(n) option remember; local d; procname(n-1) + add(procname(d), d = numtheory:-divisors(n-1)) end proc: f(1):=1: map(f, [$1..40]); # Robert Israel, Dec 25 2023
-
Mathematica
a[1] = 1; a[n_] := a[n] = a[n-1] + DivisorSum[n-1, a[#] &]; Array[a, 50] (* Paolo Xausa, Aug 24 2024 *)
-
PARI
first(upto) = {my(a=vector(upto,i,1));for(n=1,upto-1,a[n+1]=a[n]+sumdiv(n,d,a[d]));a} \\ Jason Yuen, Aug 24 2024
Formula
a(n+1) = 1 + Sum_{k=1..n} Sum_{d|k} a(d) or a(n+1) = a(n) + Sum_{d|n} a(d). - Vladeta Jovovic, Aug 08 2004
G.f. A(x) satisfies: A(x) = (x/(1 - x)) * (1 + Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020
a(n) ~ c * 2^n, where c = 0.9266495520163897954172886595779644507444342903568129920731434938761... - Vaclav Kotesovec, Dec 26 2023