A085018
Numbers n such that there is no divisor m of n with mA083752(n) = (n/m)A083752(m).
1, 4, 13, 24, 33, 37, 52, 61, 69, 73, 88, 97, 109, 121, 132, 141, 157, 177, 181, 184, 193, 213, 229, 241, 244, 249, 253, 277, 292, 312, 313, 321, 337, 349, 373, 376, 388, 393, 397, 409, 421, 429, 433, 457, 472, 481, 501, 517, 529, 537, 541, 564, 568, 573, 577
Offset: 1
Keywords
Examples
A083752(2) = (2/1)*A083752(1), therefore 2 is not in the sequence. But A083752(4) = 109 and 4*A083752(1) = 1572 and 2*A083752(2) = 1572. Therefore the equation cannot be solved and 4 is in the sequence.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
(* b = A083752 *) b[n_] := b[n] = For[k = n+1, True, k++, If[IntegerQ[Sqrt[(4k+3n)(4n+3k)]], Return[k]]]; Reap[For[n = 1, n < 600, n++, mm = Most @ Divisors[n]; If[NoneTrue[mm, b[n] == (n/#) b[#] &], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
-
Sage
def is_A085018(n): for d in divisors(n): if d < n: if d*A083752(n) == n*A083752(d): return false return true filter(is_A085018, (1..577)) # Peter Luschny, Jun 25 2014
Extensions
Edited and extended by Stefan Steinerberger, Jul 30 2007
More terms from Peter Luschny, Jun 25 2014
Comments