A085056 (Product of all composite numbers from 1 to n)/ ( product of the prime divisors of all composite numbers up to n). More precisely, denominator = product of the largest squarefree divisors of composite numbers up to n.
1, 1, 1, 2, 2, 2, 2, 8, 24, 24, 24, 48, 48, 48, 48, 384, 384, 1152, 1152, 2304, 2304, 2304, 2304, 9216, 46080, 46080, 414720, 829440, 829440, 829440, 829440, 13271040, 13271040, 13271040, 13271040, 79626240, 79626240, 79626240, 79626240
Offset: 1
Keywords
Examples
a(9) = (4*6*8*9)/((2)*(2*3)*(2)*(3)) = 24.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A084744.
Cf. A003557. [From Peter Luschny, Jun 29 2009]
Programs
-
Maple
A085056 := proc(n) local S,i; S := A003557(n); for i from 2 to n do S[i] := S[i] * S[i-1]; od; S end: # Peter Luschny, Jun 29 2009
-
Mathematica
PrimeFactors[ n_Integer ] := Flatten[ Table[ # [ [ 1 ] ], {1} ] & /@ FactorInteger[ n ] ]; a[ 1 ] := 1; a[ n_ ] := a[ n ] = a[ n - 1 ]*n/Times @@ PrimeFactors[ n ]; Table[ a[ n ], {n, 1, 40} ]
-
Sage
q=50 # change q for more terms R=[n/prod([x for x in prime_divisors(n)]) for n in [1..q]] [prod(R[0:i+1]) for i in [0..q-1]] # Tom Edgar, Mar 24 2014
Formula
a(1)=1, a(n)=a(n-1)*n/(n's prime factors).
a(1) = 1, a(n+1) = a(n)*{(n)/(the largest squarefree divisor of n)}. - Amarnath Murthy, Nov 28 2004
Extensions
More terms from Ray Chandler and Robert G. Wilson v, Jun 27 2003