A246465 Triangle read by rows: T(n,k) = A085056(n)/(A085056(k) * A085056(n-k)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 2, 4, 4, 4, 1, 1, 3, 12, 12, 6, 6, 12, 12, 3, 1, 1, 1, 3, 12, 6, 6, 6, 12, 3, 1, 1, 1, 1, 1, 3, 6, 6, 6, 6, 3, 1, 1, 1, 1, 2, 2, 2, 3, 12, 12
Offset: 0
Examples
The first five terms in A003557 are: 1, 1, 1, 2, 1 and so T(4,2) = 2*1*1*1/((1*1)*(1*1))=2 and T(5,4) = 1*2*1*1*1/((2*1*1*1)*(1))=1. The triangle begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 2, 4, 4, 4, 1, 1, 3, 12, 12, 6, 6, 12, 12, 3, 1.
Links
- Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
Programs
-
Sage
q=100 #change q for more rows P=[0]+[n/prod([x for x in prime_divisors(n)]) for n in [1..q]] [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] # generates the triangle up to q rows.
Comments