A085072 Smallest k such that n and n+k have the same prime signature.
1, 2, 5, 2, 4, 4, 19, 16, 4, 2, 6, 4, 1, 6, 65, 2, 2, 4, 8, 1, 4, 6, 16, 24, 7, 98, 16, 2, 12, 6, 211, 1, 1, 3, 64, 4, 1, 7, 14, 2, 24, 4, 1, 5, 5, 6, 32, 72, 2, 4, 11, 6, 2, 2, 32, 1, 4, 2, 24, 6, 3, 5, 665, 4, 4, 4, 7, 5, 8, 2, 36, 6, 3, 1, 16, 5, 24, 4, 32, 544, 3, 6, 6, 1, 1, 4, 16, 8, 36, 2
Offset: 2
Keywords
Examples
a(28) = 17 as 28 = 2^2*7 and 28+17 = 45 = 3^2*5, both have the prime signature p^2*q where p and q are primes.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..20000
Programs
-
Maple
s:= n-> sort(map(i-> i[2], ifactors(n)[2])): a:= proc(n) option remember; local k; for k while s(n)<>s(n+k) do od; k end: seq(a(n), n=2..100); # Alois P. Heinz, Feb 28 2018
-
Mathematica
s[n_] := Sort[FactorInteger[n][[All, 2]]]; a[n_] := Module[{sn = s[n], k}, For[k = 1, True, k++, If[sn == s[n+k], Return[k]]]]; a /@ Range[2, 100] (* Jean-François Alcover, Nov 02 2020 *)
-
PARI
a(n) = {my(k=1, s = vecsort(factor(n)[,2]~)); while (vecsort(factor(n+k)[,2]~) != s, k++); k;} \\ Michel Marcus, Nov 02 2020
Formula
a(prime(k)^r) = prime(k+1)^r- prime(k)^r.
a(2^m*prime(k)) = 2^m*(prime(k+1) - prime(k)).
a(n) = A081761(n) - n. - Michel Marcus, Nov 02 2020
Extensions
More terms from David Wasserman, Jan 12 2005