A085073 Smallest k such that n+k and n*k have the same prime signature, or 0 if no such number exists.
2, 1, 7, 41, 15, 134, 3, 127, 11, 2, 3, 548, 2, 1, 3, 389, 5, 582, 2, 316, 1, 38, 3, 2216, 3, 2, 13, 212, 5, 2742, 2, 1669, 1, 1, 31, 2764, 2, 1, 13, 1094, 4, 2298, 3, 1, 123, 14, 11, 8912, 3, 202, 17, 2, 2, 1146, 23, 904, 1, 26, 3, 11028, 13, 22, 57, 3581, 37, 1194, 2, 172, 15
Offset: 1
Keywords
Examples
a(6) = 379 as 6*379 = 2*3*379 and 6+379 = 385 = 5*7*11 both have prime signature p*q*r.
Links
- Michel Marcus, Table of n, a(n) for n = 1..3000
Programs
-
Maple
s:= proc(n) s(n):= sort(map(i-> i[2], ifactors(n)[2])) end: a:= proc(n) option remember; local k; for k while s(n*k)<>s(n+k) do od; k end: seq(a(n), n=1..70); # Alois P. Heinz, Mar 06 2019
-
Mathematica
kmax = 10^6; s[n_] := FactorInteger[n][[All, 2]] // Sort; a[n_] := Module[{k}, If[n == 1, Return[2]]; For[k = 1, k <= kmax, k++, If[s[n k] == s[n+k], Return[k]]]; 0]; Array[a, 70] (* Jean-François Alcover, Nov 17 2020 *)
-
PARI
sgntr(n) = vecsort(factor(n)[, 2]~); a(n) = {my(k=1); while (sgntr(n+k) != sgntr(n*k), k++); k; } \\ Michel Marcus, Nov 17 2020
Extensions
Corrected by Jason Earls, Jul 10 2003
More terms from David Wasserman, Jan 12 2005