A085126 Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10.
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 45, 48, 54, 60, 63, 72, 75, 81, 84, 90, 96, 105, 108, 120, 126, 135, 144, 147, 150, 162, 168, 180, 189, 192, 210, 216, 225, 240, 243, 252, 270, 288, 294, 300, 315, 324, 336, 360, 375, 378, 384, 405, 420, 432, 441, 450
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10001 (first 1001 terms from Harvey P. Dale)
Crossrefs
Programs
-
Mathematica
Select[3*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Apr 10 2019 *)
-
Python
from sympy import integer_log def A085126(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,5)[0]+1): for k in range(integer_log(r:=m//5**j,3)[0]+1): c -= (r//3**k).bit_length() return c return bisection(f,n,n)*3 # Chai Wah Wu, Sep 17 2024
-
Python
# faster for initial segment of sequence import heapq from itertools import islice def A085126gen(): # generator of terms v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7] while True: v = heapq.heappop(h) if v != oldv: yield 3*v oldv = v for p in psmooth_primes: heapq.heappush(h, v*p) print(list(islice(A085126gen(), 65))) # Michael S. Branicky, Sep 17 2024
Formula
a(n) = 3*A002473(n). - Chai Wah Wu, Sep 18 2024
Sum_{n>=1} 1/a(n) = 35/24. - Amiram Eldar, Sep 23 2024
Extensions
More terms from David Wasserman, Jan 28 2005
Offset changed to 1 by Michael S. Branicky, Sep 17 2024