cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085139 a(n) = Sum_{i=0..n-1} (1 + (-1)^(n-1-i))/2 * Sum_{j=0..i} a(j)*a(i-j) for n > 0, with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 18, 58, 194, 670, 2370, 8546, 31298, 116102, 435346, 1647418, 6283394, 24130174, 93226242, 362098050, 1413098370, 5538138182, 21788069266, 86016385274, 340655956802, 1353023683486, 5388230857538, 21510345134178
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 20 2003

Keywords

Programs

  • Mathematica
    a[n_] := a[n] = (1/2)Sum[Sum[a[j]a[i -j], {j, 0, i}](1 + (-1)^(n+1+i)), {i, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 10}]
    (* Second program: *)
    Block[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(1/(2 x)) (1 - x^2 - Sqrt[(1 - x^2)^2 - 4 x (1 - x^2)]), {x, 0, 25}], x] ] (* Michael De Vlieger, Jun 06 2023 *)

Formula

G.f.: (1/(2*x)) * (1 - x^2 - sqrt((1 - x^2)^2 - 4*x*(1 - x^2))).
G.f.: C(x/(1-x^2)) where C(x) is the g.f. of A000108. - Paul Barry, Apr 12 2005
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x^2) (continued fraction); this is a special case of the previous formula. - Joerg Arndt, Mar 18 2011
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-2k) - Sum_{k=0..floor((n-2)/2)} C(n-k-2,k)*C(n-2k-2). - Paul Barry, Nov 30 2008
From Paul Barry, May 27 2009: (Start)
G.f.: 1+x/(1-2x-2x^2/(1-x-2x^2/(1-2x-x^2/(1-2x-2x^2/(1-x-2x^2/(1-2x-x^2/(1-2x-2x^2/(1-x-2x^2/(1-... (continued fraction).
a(n) = 0^n + Sum_{k=0..floor((n-1)/2)} C(n-k-1,k)*A000108(n-2k). (End)
G.f.: M(F(x)) where F(x) is the g.f. of A000045, M(x) is the g.f. A001006. - Vladimir Kruchinin, Sep 06 2010
G.f. A(x) satisfies: A(x) = 1 + x/(1-x^2) * A(x)^2. - Paul D. Hanna, Jul 04 2018
G.f. A(x) satisfies: Sum_{n>=0} log( (1 - (-1)^n*x)/A(x) )^n / n! = 1. - Paul D. Hanna, Jul 04 2018
a(n) ~ 5^(1/4) * phi^(3*n) / (sqrt(2*Pi) * n^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 04 2018

Extensions

Name revised slightly by Paul D. Hanna, Jul 04 2018