A085140 Expansion of q^(-1/6) * eta(q^2)^3 / eta(q)^2 in powers of q.
1, 2, 2, 4, 5, 6, 10, 12, 15, 20, 26, 32, 40, 50, 60, 76, 92, 110, 134, 160, 191, 230, 272, 320, 380, 446, 522, 612, 715, 830, 966, 1120, 1292, 1494, 1720, 1976, 2272, 2602, 2974, 3400, 3876, 4412, 5020, 5700, 6460, 7322, 8282, 9352, 10559, 11900, 13396
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 12*x^7 + 15*x^8 + ... G.f. = q + 2*q^7 + 2*q^13 + 4*q^19 + 5*q^25 + 6*q^31 + 10*q^37 + 12*q^43 + 15*q^49 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 16.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k) * (1 + x^k)^3, {k, n}], {x, 0, n}]; a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}]^2, {x, 0, n}]; a[ n_] := With[ {t = Log[q]/(2 Pi I)}, SeriesCoefficient[ q^(-1/6) DedekindEta[ 2 t]^3 / DedekindEta[ t]^2, {q, 0, n}]]; a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x, x]^3, {x, 0, n}]; (* Michael Somos, Jul 11 2015 *) a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(j j + j) / Product[ 1 + x^k, {k, 1, 2 j + 1, 2}], {j, 0, Sqrt[8 n + 1]/2}], {x, 0, 2 n}]]; (* Michael Somos, Jul 11 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A)^2, n))};
Formula
Expansion of psi(x) / chi(-x) = f(-x^2) / chi(-x)^2 = f(-x) / chi(-x)^3 = phi(-x) / chi(-x)^4 = phi(x) / chi(-x^2)^2 = f(-x^2)^2 / phi(-x) = f(-x)^4 / phi(-x)^3 = psi(x)^2 / f(-x^2) = chi(x)^2 * psi(x^2) = f(-x^2)^3 / f(-x)^2 in powers of x where f(), phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Feb 18 2006
Euler transform of period 2 sequence [ 2, -1, ...].
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k - 1))^2 = Product_{k>0} (1 - x^k) * (1 + x^k)^3.
a(n) = b(n)+b(n-1)+b(n-3)+b(n-6)+...+b(n-k*(k+1)/2)+..., where b() is A000009(). E.g. a(8) = b(8)+b(7)+b(5)+b(2) = 6+5+3+1 = 15. - Vladeta Jovovic, Aug 18 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = (3/4)^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132970. - Michael Somos, Jul 11 2015
a(n) = A053254(2*n). - Michael Somos, Jul 11 2015
a(n) ~ exp(Pi*sqrt(n/3))/(4*sqrt(n)). - Vaclav Kotesovec, Sep 07 2015
Comments