cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085140 Expansion of q^(-1/6) * eta(q^2)^3 / eta(q)^2 in powers of q.

Original entry on oeis.org

1, 2, 2, 4, 5, 6, 10, 12, 15, 20, 26, 32, 40, 50, 60, 76, 92, 110, 134, 160, 191, 230, 272, 320, 380, 446, 522, 612, 715, 830, 966, 1120, 1292, 1494, 1720, 1976, 2272, 2602, 2974, 3400, 3876, 4412, 5020, 5700, 6460, 7322, 8282, 9352, 10559, 11900, 13396
Offset: 0

Views

Author

Michael Somos, Jun 20 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In the notation of Dragonette on page 498 Lemma 6, the generating function is G_2(q^(1/2))/2.
Equals A000009 convolved with A010054. [Gary W. Adamson, Mar 16 2010]

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 12*x^7 + 15*x^8 + ...
G.f. = q + 2*q^7 + 2*q^13 + 4*q^19 + 5*q^25 + 6*q^31 + 10*q^37 + 12*q^43 + 15*q^49 + ...
		

Crossrefs

Cf. A000009, A010054. [Gary W. Adamson, Mar 16 2010]

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k) * (1 + x^k)^3, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}]^2, {x, 0, n}];
    a[ n_] := With[ {t = Log[q]/(2 Pi I)}, SeriesCoefficient[ q^(-1/6) DedekindEta[ 2 t]^3 / DedekindEta[ t]^2, {q, 0, n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x, x]^3, {x, 0, n}]; (* Michael Somos, Jul 11 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(j j + j) / Product[ 1 + x^k, {k, 1, 2 j + 1, 2}], {j, 0, Sqrt[8 n + 1]/2}], {x, 0, 2 n}]]; (* Michael Somos, Jul 11 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A)^2, n))};

Formula

Expansion of psi(x) / chi(-x) = f(-x^2) / chi(-x)^2 = f(-x) / chi(-x)^3 = phi(-x) / chi(-x)^4 = phi(x) / chi(-x^2)^2 = f(-x^2)^2 / phi(-x) = f(-x)^4 / phi(-x)^3 = psi(x)^2 / f(-x^2) = chi(x)^2 * psi(x^2) = f(-x^2)^3 / f(-x)^2 in powers of x where f(), phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Feb 18 2006
Euler transform of period 2 sequence [ 2, -1, ...].
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k - 1))^2 = Product_{k>0} (1 - x^k) * (1 + x^k)^3.
a(n) = b(n)+b(n-1)+b(n-3)+b(n-6)+...+b(n-k*(k+1)/2)+..., where b() is A000009(). E.g. a(8) = b(8)+b(7)+b(5)+b(2) = 6+5+3+1 = 15. - Vladeta Jovovic, Aug 18 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = (3/4)^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132970. - Michael Somos, Jul 11 2015
a(n) = A053254(2*n). - Michael Somos, Jul 11 2015
a(n) ~ exp(Pi*sqrt(n/3))/(4*sqrt(n)). - Vaclav Kotesovec, Sep 07 2015