A085143 Triangle table from number wall of reversion of Fibonacci numbers.
1, -1, -1, -1, -1, -1, 1, 0, 2, 1, 1, -2, 4, 3, 1, -1, 3, -11, -5, -5, -1, -1, -1, -34, 10, -20, -8, -1, 1, 11, 106, -116, 96, 44, 13, 1, 1, 15, 368, -328, 716, 86, 125, 21, 1, -1, 13, -1324, -1344, -5634, 1866, -1063, -316, -34, -1, -1, 77, -4811, -17235
Offset: 1
Examples
T(4,2)=0 since det([0,0,1,-1; 0,1,-1,0; 1,-1,0,2; -1,0,2,-3])=0. 1 -1 -1 -1 -1 -1 1 0 2 1 1 -2 4 3 1 -1 3 -11 -5 -5 -1 -1 -1 -34 10 -20 -8 -1 1 11 106 -116 96 44 13 1 1 15 368 -328 716 86 125 21 1 -1 13 -1324 -1344 -5634 1866 -1063 -316 -34 -1
Crossrefs
Cf. A007440.
Programs
-
Maple
A085143 := proc(n,k) local A,r,c ; A := Matrix(n,n) ; for r from 1 to n do for c from 1 to n do A[r,c] := A007440(r+c-1+k-n) ; end do: end do: Determinant(A) ; end proc: seq(seq(A085143(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Jul 21 2023
-
PARI
{f(n)=polcoeff((-1-x+sqrt(1+2*x+5*x^2+x^2*O(x^n)))/(2*x),n)} \\ A007440 {T(n,k)=matdet(matrix(n,n,i,j,f(i+j-1+k-n)))}
Formula
T(n, k) = det(f(i+j-1+k-n)_{i, j=1..n}) where f(n)=A007440(n).
T(n, k) = (-1)^[(n+k-1)/2]*T(k-1, n-1) if 1<=k<=n.