cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343773 Excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).

Original entry on oeis.org

1, 1, 0, -2, -3, 1, 11, 15, -13, -77, -86, 144, 595, 495, -1520, -4810, -2485, 15675, 39560, 6290, -159105, -324805, 87075, 1592843, 2616757, -2136539, -15726114, -20247800, 32296693, 152909577, 145139491, -417959049, -1460704685, -885536173, 4997618808, 13658704994
Offset: 0

Views

Author

Keywords

Comments

All terms a(n), n >= 0, are contained in both A100223 and A214649, as well as in A007440 (if the signs of integers are not taken into account). So these sequences form a cluster, the base of which is the current sequence.
The Motzkin number A001006(n) is split into two parts A107587(n) and A343386(n) (see A343386). The value a(n), the difference between A107587(n) and A343386(n), can be called the "shadow" of A001006(n). This is clearly seen if we compare the g.f. for the Motzkin numbers M(x) = 1 + x*M(x) + x^2*M(x)^2 and the current g.f. A(x) = 1 + x*A(x) - x^2*A(x)^2.
Binomial transform of 1, 0, -1, 0, 2, 0, -5, 0, 14, 0, -42, 0, ... (see A000108). - Gennady Eremin, Jul 14 2021

Examples

			G.f. = 1 + x - 2*x^3 - 3*x^4 + x^5 + 11*x^6 + 15*x^7 - 13*x^8 - 77*x^9 - 86*x^10 + 144*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    With[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(-1 + x + Sqrt[1 - 2 x + 5 x^2])/(2 x^2), {x, 0, 36}], x] ] (* Michael De Vlieger, May 01 2021 *)
    a[n_] := Hypergeometric2F1[(1 - n)/2, -n/2, 2, -4];
    Table[a[n], {n, 0, 35}] (* Peter Luschny, May 30 2021 *)
    a[ n_] := If[n<0, 0, SeriesCoefficient[Nest[1 + x*# - (x*#)^2&, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, Oct 27 2024 *)
    a[ n_] := SeriesCoefficient[2/(1 - x + (1 - 2*x + 5*x^2)^(1/2)), {x, 0, n}]; (* Michael Somos, Oct 27 2024 *)
  • PARI
    {a(n) = my(y = 1 + O(x)); for(i = 1, n, y = 1 + x*y - x^2*y^2); polcoeff(y, n)}; /* Michael Somos, Oct 27 2024 */
    
  • PARI
    {a(n) = polcoeff( 2/(1 - x + (1 - 2*x + 5*x^2 + x*O(x^n))^(1/2)), n)}; /* Michael Somos, Oct 27 2024 */
  • Python
    A343773 = [1, 1]
    for n in range(2, 801):
        A343773.append(((2*n+1)*A343773[-1]
          - 5*(n-1)*A343773[-2]) // (n+2))
    

Formula

a(n) = A107587(n) - A343386(n), n>=0.
a(n) = A100223(n+2) = A214649(n+1), n>=0.
a(n) = (-1)^n * A007440(n+1), n>=0.
D-finite with recurrence a(n) = ((2*n+1)*a(n-1) - 5*(n-1)*a(n-2))/(n+2), n>1.
G.f.: (-1 + x + sqrt(1 - 2*x + 5*x^2))/(2*x^2).
G.f. A(x) satisfies A(x) = 1 + x*A(x) - x^2*A(x)^2.
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n, 2*k) * A000108(k).
a(n) = 2*A107587(n) - A001006(n) = A001006(n) - 2*A343386(n).
Limit_{n->oo} a(n)/A001006(n) = 0.
a(n) = hypergeom([(1 - n)/2, -n/2], [2], -4). - Peter Luschny, May 30 2021
G.f. A(x) with offset 1 is the reversion of g.f. for signed Fibonacci numbers 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, ... (see A039834 starting at offset 1). - Gennady Eremin, Jul 15 2021
Showing 1-1 of 1 results.