A343773 Excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).
1, 1, 0, -2, -3, 1, 11, 15, -13, -77, -86, 144, 595, 495, -1520, -4810, -2485, 15675, 39560, 6290, -159105, -324805, 87075, 1592843, 2616757, -2136539, -15726114, -20247800, 32296693, 152909577, 145139491, -417959049, -1460704685, -885536173, 4997618808, 13658704994
Offset: 0
Examples
G.f. = 1 + x - 2*x^3 - 3*x^4 + x^5 + 11*x^6 + 15*x^7 - 13*x^8 - 77*x^9 - 86*x^10 + 144*x^11 + ...
Links
- Gennady Eremin, Table of n, a(n) for n = 0..800
- Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
- W. F. Lunnon, The number-wall algorithm: an LFSR cookbook, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1.
Programs
-
Mathematica
With[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(-1 + x + Sqrt[1 - 2 x + 5 x^2])/(2 x^2), {x, 0, 36}], x] ] (* Michael De Vlieger, May 01 2021 *) a[n_] := Hypergeometric2F1[(1 - n)/2, -n/2, 2, -4]; Table[a[n], {n, 0, 35}] (* Peter Luschny, May 30 2021 *) a[ n_] := If[n<0, 0, SeriesCoefficient[Nest[1 + x*# - (x*#)^2&, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, Oct 27 2024 *) a[ n_] := SeriesCoefficient[2/(1 - x + (1 - 2*x + 5*x^2)^(1/2)), {x, 0, n}]; (* Michael Somos, Oct 27 2024 *)
-
PARI
{a(n) = my(y = 1 + O(x)); for(i = 1, n, y = 1 + x*y - x^2*y^2); polcoeff(y, n)}; /* Michael Somos, Oct 27 2024 */
-
PARI
{a(n) = polcoeff( 2/(1 - x + (1 - 2*x + 5*x^2 + x*O(x^n))^(1/2)), n)}; /* Michael Somos, Oct 27 2024 */
-
Python
A343773 = [1, 1] for n in range(2, 801): A343773.append(((2*n+1)*A343773[-1] - 5*(n-1)*A343773[-2]) // (n+2))
Formula
a(n) = (-1)^n * A007440(n+1), n>=0.
D-finite with recurrence a(n) = ((2*n+1)*a(n-1) - 5*(n-1)*a(n-2))/(n+2), n>1.
G.f.: (-1 + x + sqrt(1 - 2*x + 5*x^2))/(2*x^2).
G.f. A(x) satisfies A(x) = 1 + x*A(x) - x^2*A(x)^2.
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n, 2*k) * A000108(k).
Limit_{n->oo} a(n)/A001006(n) = 0.
a(n) = hypergeom([(1 - n)/2, -n/2], [2], -4). - Peter Luschny, May 30 2021
G.f. A(x) with offset 1 is the reversion of g.f. for signed Fibonacci numbers 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, ... (see A039834 starting at offset 1). - Gennady Eremin, Jul 15 2021
Comments