A085249 Terms k of A002977 such that both (k-1)/2 and (k-1)/3 are also terms of A002977.
31, 175, 1039, 1471, 2191, 4495, 6223, 8815, 13135, 20479, 22639, 26815, 30703, 36031, 37327, 45967, 52879, 53743, 54031, 66703, 78799, 89023, 108175, 122863, 125887, 132799, 135679, 136687, 160879, 177151, 178159, 181183, 184207, 188095
Offset: 1
Keywords
Examples
A002977(51) = 175: (175-1)/2 = 82 = A002977(28) and (175-1)/3 = 58 = A002977(22), therefore 175 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
seq[max_] := Module[{s = Flatten[NestWhileList[Flatten[{2*# + 1, 3*# + 1}] &, 1, Min[#1] < max &]], t}, t = Union[Select[s, # <= max &]]; Select[t, MemberQ[t, (# - 1)/2] && MemberQ[t, (# - 1)/3] &]]; seq[200000] (* Amiram Eldar, May 07 2022 *)
Extensions
More terms from Ray Chandler, Sep 06 2003