cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085292 Product of Lucas (A000204) and a Pell companion series (A001333).

Original entry on oeis.org

1, 9, 28, 119, 451, 1782, 6931, 27119, 105868, 413649, 1615681, 6311522, 24654241, 96306849, 376200748, 1469546399, 5740457491, 22423834422, 87593763331, 342165736199, 1336595027068, 5221113899769, 20395130698081, 79669083012482
Offset: 1

Views

Author

Gary W. Adamson, Jun 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    L[0] = 2; L[1] = 1; L[n] = L[n - 1] + L[n - 2]; P[0] = P[1] = 1; P[n_] := P[n] = 2P[n - 1] + P[n - 2]; Table[ L[n]P[n], {n, 1, 24}]
    With[{nn=30},Rest[LinearRecurrence[{2,1},{1,1},nn]LucasL[Range[0,nn-1]]]] (* Harvey P. Dale, Apr 20 2012 *)
    LinearRecurrence[{2, 7, 2, -1},{1, 9, 28, 119},24] (* Ray Chandler, Aug 03 2015 *)

Formula

a(n) = A000204(n) * A001333(n).
a(n) = 2*a(n-1)+7*a(n-2)+2*a(n-3)-a(n-4). G.f.: -x*(2*x^3-3*x^2-7*x-1) / (x^4-2*x^3-7*x^2-2*x+1). - Colin Barker, Oct 15 2013
2* A085292(n) = A085293(n).

Extensions

Edited and extended by Robert G. Wilson v, Jun 24 2003