cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085293 Product of Lucas (A000204) and a Pell Companion series (A002203).

Original entry on oeis.org

2, 18, 56, 238, 902, 3564, 13862, 54238, 211736, 827298, 3231362, 12623044, 49308482, 192613698, 752401496, 2939092798, 11480914982, 44847668844, 175187526662, 684331472398, 2673190054136, 10442227799538, 40790261396162, 159338166024964, 622419427368002
Offset: 1

Views

Author

Gary W. Adamson, Jun 24 2003

Keywords

Comments

Convergent a(n+1)/a(n) = ((1+sqrt(5))/2)*(1+sqrt(2)) = (1.618...)*(2.414213...) = 3.9062796... = (1 + sqrt(2) + sqrt(5) + sqrt(10))/2.

Crossrefs

Programs

  • Magma
    I:=[2,18,56,238]; [n le 4 select I[n] else 2*Self(n-1) + 7*Self(n-2) + 2*Self(n-3) - Self(n-4):n in [1..30]]; // Marius A. Burtea, Aug 25 2019

Formula

a(n) = A000204(n) * A002203(n), n > 0.
a(n) = 2*A085292(n).
a(n) = (((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n) * ((1+sqrt(2))^n + (1-sqrt(2))^n).
From Colin Barker, Oct 15 2013: (Start)
a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: -2*x*(2*x^3 - 3*x^2 - 7*x - 1) / (x^4 - 2*x^3 - 7*x^2 - 2*x + 1). (End)
E.g.f.: 4*(exp(x/2)*(cosh(x/sqrt(2))*cosh(sqrt(5/2)*x)*cosh(sqrt(5)*x/2)+sinh(x/sqrt(2))*sinh(sqrt(5/2)*x)*sinh(sqrt(5)*x/2))-1). - Stefano Spezia, Aug 25 2019

Extensions

More terms from David Wasserman, Jan 31 2005
More terms from Colin Barker, Oct 16 2013