A085296 Runs of zeros in Catalan sequence modulo 3: consecutive occurrences of binomial(2*k,k)/(k+1) == 0 (mod 3).
3, 12, 3, 39, 3, 12, 3, 120, 3, 12, 3, 39, 3, 12, 3, 363, 3, 12, 3, 39, 3, 12, 3, 120, 3, 12, 3, 39, 3, 12, 3, 1092, 3, 12, 3, 39, 3, 12, 3, 120, 3, 12, 3, 39, 3, 12, 3, 363, 3, 12, 3, 39, 3, 12, 3, 120, 3, 12, 3, 39, 3, 12, 3, 3279, 3, 12, 3, 39, 3, 12, 3, 120, 3, 12, 3, 39, 3, 12, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- R. Stephan, Some divide-and-conquer sequences ...
- R. Stephan, Table of generating functions
Programs
-
Maple
nmax:=79: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (3^(p+2)-3)/2 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 11 2013
-
Mathematica
Map[If[First@ # == 0, Length@ #, Nothing] &, SplitBy[Array[Mod[CatalanNumber@ #, 3] &, 10^4], # == 0 &]] (* Michael De Vlieger, Nov 02 2018 *)
-
PARI
A085296(n) = if(n%2,3,3*(1+A085296(n/2))); \\ Antti Karttunen, Nov 01 2018
Formula
a(2*n-1) = 3, a(2*n) = 3*(a(n)+1), for n >= 1.
a(n) = (9 * 3^A007814(n) - 1) / 2 - 1. - Ralf Stephan, Oct 10 2003
From Johannes W. Meijer, Feb 11 2013: (Start)
a((2*n-1)*2^p) = (3^(p+2)-3)/2, p >= 0 and n >= 1. Observe that a(2^p) = A029858(p+2).
a(2^(p+3)*n + 2^(p+2) - 1) = a(2^(p+2)*n + 2^(p+1) - 1) for p >= 0 and n >= 1. (End)
Comments