cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085298 a(n) is the smallest exponent x such that prime(n)^x when reversed is a prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 8, 7, 1, 1, 2, 5, 15, 10, 12, 4, 39, 1, 1, 1, 11, 2, 1, 1, 10, 1, 23, 1, 5, 1, 243, 2, 1, 1, 1, 23, 1, 34, 1, 1, 1, 2, 58, 1, 3, 9, 166, 17, 68, 8, 8, 3, 7, 5, 5, 2, 2, 2, 61, 11, 97, 1, 1, 10, 2, 1, 1, 41, 1, 1, 66, 1, 5, 1, 1, 2, 2, 8, 40, 2, 8, 19, 2, 2, 723
Offset: 1

Views

Author

Labos Elemer, Jun 24 2003

Keywords

Comments

It is conjectured that for every n such exponent exists.

Examples

			a(n)=1 means that rev(prime(n)) is prime i.e. prime(n) is in A007500;
a(n)=2 means that rev(prime(n)^2) is prime but rev(prime(n)) is not, like n=8:p=19 and 91 is not a prime but rev[19^2]=rev[361]=163 is a prime;
For n, the first k exponent providing rev(prime(n)^k) prime can be quite large, like at n=87: rev(p(87)^723)=rev(449^723) is the first [probably] prime has 1918 decimal digits: 948......573.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k, p; p:= ithprime(n); for k while not isprime((s->
          parse(cat(seq(s[-i], i=1..length(s)))))(""||(p^k))) do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    a[n_] := Block[{k = 1}, While[! PrimeQ@ FromDigits@ Reverse@ IntegerDigits[ Prime[n]^k], k++]; k]; Array[a, 87] (* Giovanni Resta, Sep 04 2019 *)
  • PARI
    a(n) = {my(x=1, p=prime(n)); while (!ispseudoprime(fromdigits(Vecrev(digits(p^x)))), x++); x;} \\ Michel Marcus, Sep 04 2019

Formula

a(n) = Min{x; reversed(prime(n)^x) is a prime}.