A085323 Numbers k such that both k and k+1 are sums of two positive cubes.
854, 4940, 9603, 10744, 17919, 29743, 62558, 79001, 133273, 164304, 193192, 205406, 214984, 242648, 263871, 378936, 431999, 447336, 488375, 517427, 610687, 731158, 762047, 1000511, 1061550, 1125207, 1134124, 1157632, 1158137, 1179520
Offset: 1
Keywords
Examples
854 = 9^3 + 5^3 and 855 = 8^3 + 7^3; 4940 = 17^3 + 3^3 and 4941 = 13^3 + 14^3.
Links
- Zak Seidov, Table of n, a(n) for n = 1..664
Crossrefs
Cf. A003325.
Programs
-
Mathematica
m=110; k=3; t=Union[Flatten[Table[Table[w^k+q^k, {w, q, m}], {q, 1, m}]]]; dt=Delete[ -RotateRight[t]+t, 1]; p=Part[t, Flatten[Position[dt, 1]]]; Select[p, # <= m^3 + 1 &] (* corrected by Giovanni Resta, May 09 2025 *)
Extensions
Corrected and extended by Zak Seidov, Jul 24 2009
Name and Example edited by Jon E. Schoenfield, Jul 29 2017
Comments