cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085122 a(n) = PrimePi(sigma(n)-phi(n)) - (PrimePi(sigma(n)) - PrimePi(phi(n))), where PrimePi = A000720, sigma = A000203 and phi = A000010.

Original entry on oeis.org

0, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 3, 3, 0, 2, 0, 3, 2, 2, 3, 3, 0, 3, 4, 3, 0, 4, 0, 3, 4, 3, 0, 4, 3, 5, 3, 5, 0, 3, 3, 3, 3, 3, 0, 3, 0, 4, 3, 4, 3, 4, 0, 5, 5, 5, 0, 4, 0, 2, 5, 4, 4, 4, 0, 5, 5, 5, 0, 7, 4, 5, 4, 5, 0, 4, 3, 5, 5, 5, 5, 4, 0, 5, 5, 5, 0, 6, 0, 6, 6, 7, 0, 5, 0, 5, 6, 8, 0, 5, 5, 6, 7, 5, 5, 5, 6, 5, 6, 7, 5, 5, 0, 7
Offset: 1

Views

Author

Labos Elemer, Jul 11 2003

Keywords

Comments

Scatterplot of this sequence shows interesting strata. - Antti Karttunen, Jan 22 2020

Crossrefs

Programs

  • Mathematica
    t=Table[PrimePi[DivisorSigma[1, w]-EulerPhi[w]]- (PrimePi[DivisorSigma[1, w]]-PrimePi[EulerPhi[w]]), {w, 1, 10000}]
  • PARI
    A085122(n) = (primepi(sigma(n)-eulerphi(n)) - (primepi(sigma(n))-primepi(eulerphi(n)))); \\ Antti Karttunen, Jan 22 2020

Formula

a(n) = A000720(A051612(n)) - (A070803(n) - A070804(n)) = A000720(A051612(n)) - A085343(n). - Antti Karttunen, Jan 22 2020

Extensions

Name edited by Antti Karttunen, Jan 22 2020

A085346 Least number x so that number of primes between sigma(x) and phi(x) equals n.

Original entry on oeis.org

3, 2, 4, 6, 10, 14, 12, 26, 18, 34, 28, 32, 24, 62, 44, 30, 123, 40, 36, 64, 56, 106, 54, 48, 70, 66, 146, 105, 88, 78, 80, 135, 60, 178, 72, 102, 202, 112, 84, 164, 114, 90, 96, 154, 695, 231, 138, 108, 184, 1141, 176, 140, 126, 244, 132, 160, 326, 232, 186, 208, 120
Offset: 1

Views

Author

Labos Elemer, Jul 10 2003

Keywords

Crossrefs

Programs

  • PARI
    s(n) = my(f = factor(n)); primepi(sigma(f)) - primepi(eulerphi(f));
    list(len) = {my(v = vector(len), k = 1, c = 0, i); while(c < len, i = s(k); if(i > 0 && i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Dec 20 2024

Formula

a(n) = Min{x; A085343(x) = n}.

A085344 Least number x such that number of primes between sigma(x) and x equals n.

Original entry on oeis.org

2, 4, 10, 12, 16, 46, 28, 24, 44, 30, 42, 40, 36, 54, 48, 66, 178, 78, 104, 80, 102, 60, 128, 72, 84, 152, 90, 138, 255, 96, 108, 174, 140, 126, 132, 266, 160, 150, 248, 222, 156, 120, 246, 200, 144, 198, 634, 224, 220, 204, 370, 260, 168, 376, 555, 430, 354, 308
Offset: 1

Views

Author

Labos Elemer, Jul 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    m = 100; seq = Table[0, {m}]; c = 0; n = 0; While[c < m, n++; i = PrimePi[ DivisorSigma[1, n]] - PrimePi[n]; If[i <= m && seq[[i]] == 0, c++; seq[[i]] = n]]; seq (* Amiram Eldar, Mar 01 2020 *)
  • PARI
    a(n) = {my(x=1); while (primepi(sigma(x)) - primepi(x) != n, x++); x;} \\ Michel Marcus, Mar 01 2020

Formula

a(n) = Min{x; A085341(x)=n}.
Showing 1-3 of 3 results.