cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085375 a(n) = binomial(2*n+1, n+1)*binomial(n+4, 4).

Original entry on oeis.org

1, 15, 150, 1225, 8820, 58212, 360360, 2123550, 12033450, 66050270, 353068716, 1845586470, 9464546000, 47738754000, 237329805600, 1164893795820, 5653161067950, 27157342385250, 129275302348500, 610315506350550, 2859764086899720, 13308425945529000
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 26 2003

Keywords

Crossrefs

Programs

  • Maple
    seq(binomial(2*n+1, n+1)*binomial(n+4, 4), n=0..20); # Zerinvary Lajos, Jan 18 2007
  • Mathematica
    Table[Binomial[2*n + 1, n + 1] * Binomial[n + 4, 4], {n, 0, 30}]
  • Python
    from _future_ import division
    A085375_list, b = [], 1
    for n in range(501):
        A085375_list.append(b)
        b = b*2*(n+5)*(2*n+3)//((n+1)*(n+2)) # Chai Wah Wu, Jan 26 2016

Formula

a(n+1) = a(n)*2*(n+5)*(2*n+3)/((n+1)*(n+2)). - Chai Wah Wu, Jan 26 2016
G.f.: (1 - 3*x + 6*x^2 - 5*x^3) / (1 - 4*x)^(9/2). - Ilya Gutkovskiy, Nov 17 2021

A095801 Square of Narayana triangle A001263: View A001263 as a lower triangular matrix. Then the square of that matrix is also lower triangular. Sequence gives this lower triangle, read by rows.

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 30, 12, 1, 42, 140, 100, 20, 1, 132, 630, 700, 250, 30, 1, 429, 2772, 4410, 2450, 525, 42, 1, 1430, 12012, 25872, 20580, 6860, 980, 56, 1, 4862, 51480, 144144, 155232, 74088, 16464, 1680, 72, 1, 16796, 218790, 772200, 1081080, 698544
Offset: 1

Views

Author

Gary W. Adamson, Jun 07 2004

Keywords

Comments

The first three columns are A000108 (the Catalan numbers), A002457 and A085374.

Examples

			The first 3 rows are 1; 2, 1; 5, 6, 1; since the first 3 rows of the Narayana triangle in matrix format are M = [1 0 0 / 1 1 0 / 1 3 1]. Then M^2 = [1 0 0 / 2 1 0 / 5 6 1].
Triangle starts:
   1;
   2,   1;
   5,   6,   1;
  14,  30,  12,  1;
  42, 140, 100, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] = Sum[1/(i*k)*(Binomial[i-1, k-1]*Binomial[i, k-1]* Binomial[n-1, i-1]*Binomial[n, i-1]), {i, k, n}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]][[1;;50]] (* Jean-François Alcover, Jul 21 2011 *)

Formula

T(n, k) = Sum_{i = k..n} A001263(n, i)*A001263(i, k).
T(n, n-1) = n*(n-1).

Extensions

Edited and extended by David Wasserman, Sep 24 2004
Showing 1-2 of 2 results.