A085423 a(n) = floor(log_2(3n)).
1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1
Links
- C. Heuberger and H. Prodinger, On minimal expansions in redundant number systems: Algorithms and quantitative analysis, Computing 66(2001), 377-393.
Programs
-
Haskell
a085423 = a000523 . a008585 -- Reinhard Zumkeller, Mar 16 2013
-
Mathematica
Floor[Log[2,3*Range[100]]] (* Harvey P. Dale, Oct 15 2016 *)
Formula
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Feb 18 2024
Comments